1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- from util import get_input
- from itertools import product
- from more_itertools import flatten
- from math import sqrt, ceil, floor
- input = get_input("17.input")
- stuff = input[0].split()
- tx = [int(a) for a in stuff[2][2:-1].split("..")]
- ty = [int(a) for a in stuff[3][2:].split("..")]
- def hits(velx, tx, ty):
- # High school math comes in handy once again...
- #x = velx + velx - 1 + velx - 2 + velx - 3 = velx * steps - steps (steps - 1) / 2 = (velx + 1/2) * steps - steps^2 / 2
- # 2 x = (2 velx + 1) steps - steps^2
- # 2x - (2 velx + 1) steps + steps^2 = 0
- try:
- minsteps = ceil((2 * velx + 1) / 2 - sqrt(pow((2 * velx + 1) / 2, 2) - 2 * tx[0]))
- except ValueError:
- # Equation has no solution;
- # projectile never reaches area
- return []
- try:
- maxsteps = floor((2 * velx + 1) / 2 - sqrt(pow((2 * velx + 1) / 2, 2) - 2 * tx[1]))
- except ValueError:
- # Projectile x-velocity reaches 0
- # while above the target area
- maxsteps = minsteps + 1000
- res = []
- for nstep in range(minsteps, maxsteps + 1):
- #y = vely * nstep - nstep * (nstep - 1) / 2
- #vely * nstep = nstep * (nstep - 1) / 2 + y
- #vely = (nstep * (nstep - 1) / 2 + y) / nstep
- minvely = ceil((nstep * (nstep - 1) / 2 + ty[0]) / nstep)
- maxvely = floor((nstep * (nstep - 1) / 2 + ty[1]) / nstep)
- for vely in range(minvely, maxvely + 1):
- res.append((velx, vely))
- return list(set(res))
- # This is slow garbage, leaving it here so you can laugh at me
- def naive_hits(vel, tx, ty):
- topy = 0
- pos = (0, 0)
- startvel = vel
- while True:
- if pos[0] >= tx[0] and pos[0] <= tx[1]:
- if pos[1] >= ty[0] and pos[1] <= ty[1]:
- return (topy, startvel)
- if pos[1] < ty[0]:
- return (-1000, startvel)
- if pos[0] > tx[1]:
- return (-1000, startvel)
- if vel[0] == 0:
- dx = 0
- elif vel[0] < 0:
- dx = 1
- else:
- dx = -1
- pos = (pos[0] + vel[0], pos[1] + vel[1])
- vel = (vel[0] + dx, vel[1] - 1)
- topy = max(pos[1], topy)
- hits = list(flatten([hits(x, tx, ty) for x in range(0, 70)]))
- # Find highest point on parabola using initial y-velocity
- maxvely = max([h[1] for h in hits])
- # D(vely * t - (t ^ 2) / 2) == 0
- # vely - t == 0
- t = maxvely
- maxy = int(t * t - t * (t - 1) / 2)
- print("Part 1:", maxy)
- # This is easy now lol
- print("Part 2:", len(hits))
|