oled_driver.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include "i2c_master.h"
  15. #include "oled_driver.h"
  16. #include OLED_FONT_H
  17. #include "timer.h"
  18. #include "print.h"
  19. #include <string.h>
  20. #if defined(__AVR__)
  21. #include <avr/io.h>
  22. #include <avr/pgmspace.h>
  23. #elif defined(ESP8266)
  24. #include <pgmspace.h>
  25. #else // defined(ESP8266)
  26. #define PROGMEM
  27. #define memcpy_P(des, src, len) memcpy(des, src, len)
  28. #endif // defined(__AVR__)
  29. // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
  30. // Fundamental Commands
  31. #define CONTRAST 0x81
  32. #define DISPLAY_ALL_ON 0xA5
  33. #define DISPLAY_ALL_ON_RESUME 0xA4
  34. #define NORMAL_DISPLAY 0xA6
  35. #define DISPLAY_ON 0xAF
  36. #define DISPLAY_OFF 0xAE
  37. // Scrolling Commands
  38. #define ACTIVATE_SCROLL 0x2F
  39. #define DEACTIVATE_SCROLL 0x2E
  40. #define SCROLL_RIGHT 0x26
  41. #define SCROLL_LEFT 0x27
  42. #define SCROLL_RIGHT_UP 0x29
  43. #define SCROLL_LEFT_UP 0x2A
  44. // Addressing Setting Commands
  45. #define MEMORY_MODE 0x20
  46. #define COLUMN_ADDR 0x21
  47. #define PAGE_ADDR 0x22
  48. // Hardware Configuration Commands
  49. #define DISPLAY_START_LINE 0x40
  50. #define SEGMENT_REMAP 0xA0
  51. #define SEGMENT_REMAP_INV 0xA1
  52. #define MULTIPLEX_RATIO 0xA8
  53. #define COM_SCAN_INC 0xC0
  54. #define COM_SCAN_DEC 0xC8
  55. #define DISPLAY_OFFSET 0xD3
  56. #define COM_PINS 0xDA
  57. #define COM_PINS_SEQ 0x02
  58. #define COM_PINS_ALT 0x12
  59. #define COM_PINS_SEQ_LR 0x22
  60. #define COM_PINS_ALT_LR 0x32
  61. // Timing & Driving Commands
  62. #define DISPLAY_CLOCK 0xD5
  63. #define PRE_CHARGE_PERIOD 0xD9
  64. #define VCOM_DETECT 0xDB
  65. // Charge Pump Commands
  66. #define CHARGE_PUMP 0x8D
  67. // Misc defines
  68. #define OLED_TIMEOUT 60000
  69. #define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
  70. #define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
  71. // i2c defines
  72. #define I2C_CMD 0x00
  73. #define I2C_DATA 0x40
  74. #if defined(__AVR__)
  75. // already defined on ARM
  76. #define I2C_TIMEOUT 100
  77. #define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  78. #else // defined(__AVR__)
  79. #define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  80. #endif // defined(__AVR__)
  81. #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  82. #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
  83. #define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
  84. // Display buffer's is the same as the OLED memory layout
  85. // this is so we don't end up with rounding errors with
  86. // parts of the display unusable or don't get cleared correctly
  87. // and also allows for drawing & inverting
  88. uint8_t oled_buffer[OLED_MATRIX_SIZE];
  89. uint8_t* oled_cursor;
  90. OLED_BLOCK_TYPE oled_dirty = 0;
  91. bool oled_initialized = false;
  92. bool oled_active = false;
  93. bool oled_scrolling = false;
  94. uint8_t oled_rotation = 0;
  95. uint8_t oled_rotation_width = 0;
  96. #if !defined(OLED_DISABLE_TIMEOUT)
  97. uint16_t oled_last_activity;
  98. #endif
  99. // Internal variables to reduce math instructions
  100. #if defined(__AVR__)
  101. // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
  102. // probably should move this into i2c_master...
  103. static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
  104. i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
  105. for (uint16_t i = 0; i < length && status >= 0; i++) {
  106. status = i2c_write(pgm_read_byte((const char*)data++), timeout);
  107. if (status) break;
  108. }
  109. i2c_stop();
  110. return status;
  111. }
  112. #endif
  113. // Flips the rendering bits for a character at the current cursor position
  114. static void InvertCharacter(uint8_t *cursor)
  115. {
  116. const uint8_t *end = cursor + OLED_FONT_WIDTH;
  117. while (cursor < end) {
  118. *cursor = ~(*cursor);
  119. cursor++;
  120. }
  121. }
  122. bool oled_init(uint8_t rotation) {
  123. oled_rotation = oled_init_user(rotation);
  124. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  125. oled_rotation_width = OLED_DISPLAY_WIDTH;
  126. } else {
  127. oled_rotation_width = OLED_DISPLAY_HEIGHT;
  128. }
  129. i2c_init();
  130. static const uint8_t PROGMEM display_setup1[] = {
  131. I2C_CMD,
  132. DISPLAY_OFF,
  133. DISPLAY_CLOCK, 0x80,
  134. MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1,
  135. DISPLAY_OFFSET, 0x00,
  136. DISPLAY_START_LINE | 0x00,
  137. CHARGE_PUMP, 0x14,
  138. MEMORY_MODE, 0x00, }; // Horizontal addressing mode
  139. if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
  140. print("oled_init cmd set 1 failed\n");
  141. return false;
  142. }
  143. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
  144. static const uint8_t PROGMEM display_normal[] = {
  145. I2C_CMD,
  146. SEGMENT_REMAP_INV,
  147. COM_SCAN_DEC };
  148. if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
  149. print("oled_init cmd normal rotation failed\n");
  150. return false;
  151. }
  152. } else {
  153. static const uint8_t PROGMEM display_flipped[] = {
  154. I2C_CMD,
  155. SEGMENT_REMAP,
  156. COM_SCAN_INC };
  157. if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
  158. print("display_flipped failed\n");
  159. return false;
  160. }
  161. }
  162. static const uint8_t PROGMEM display_setup2[] = {
  163. I2C_CMD,
  164. COM_PINS, OLED_COM_PINS,
  165. CONTRAST, 0x8F,
  166. PRE_CHARGE_PERIOD, 0xF1,
  167. VCOM_DETECT, 0x40,
  168. DISPLAY_ALL_ON_RESUME,
  169. NORMAL_DISPLAY,
  170. DEACTIVATE_SCROLL,
  171. DISPLAY_ON };
  172. if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
  173. print("display_setup2 failed\n");
  174. return false;
  175. }
  176. oled_clear();
  177. oled_initialized = true;
  178. oled_active = true;
  179. oled_scrolling = false;
  180. return true;
  181. }
  182. __attribute__((weak))
  183. oled_rotation_t oled_init_user(oled_rotation_t rotation) {
  184. return rotation;
  185. }
  186. void oled_clear(void) {
  187. memset(oled_buffer, 0, sizeof(oled_buffer));
  188. oled_cursor = &oled_buffer[0];
  189. oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
  190. }
  191. static void calc_bounds(uint8_t update_start, uint8_t* cmd_array)
  192. {
  193. cmd_array[1] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
  194. cmd_array[4] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
  195. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
  196. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
  197. }
  198. static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array)
  199. {
  200. cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
  201. cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
  202. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];;
  203. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
  204. }
  205. uint8_t crot(uint8_t a, int8_t n)
  206. {
  207. const uint8_t mask = 0x7;
  208. n &= mask;
  209. return a << n | a >> (-n & mask);
  210. }
  211. static void rotate_90(const uint8_t* src, uint8_t* dest)
  212. {
  213. for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
  214. uint8_t selector = (1 << i);
  215. for (uint8_t j = 0; j < 8; ++j) {
  216. dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
  217. }
  218. }
  219. }
  220. void oled_render(void) {
  221. // Do we have work to do?
  222. if (!oled_dirty || oled_scrolling) {
  223. return;
  224. }
  225. // Find first dirty block
  226. uint8_t update_start = 0;
  227. while (!(oled_dirty & (1 << update_start))) { ++update_start; }
  228. // Set column & page position
  229. static uint8_t display_start[] = {
  230. I2C_CMD,
  231. COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1,
  232. PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 };
  233. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  234. calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  235. } else {
  236. calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  237. }
  238. // Send column & page position
  239. if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
  240. print("oled_render offset command failed\n");
  241. return;
  242. }
  243. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  244. // Send render data chunk as is
  245. if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  246. print("oled_render data failed\n");
  247. return;
  248. }
  249. } else {
  250. // Rotate the render chunks
  251. const static uint8_t source_map[] = OLED_SOURCE_MAP;
  252. const static uint8_t target_map[] = OLED_TARGET_MAP;
  253. static uint8_t temp_buffer[OLED_BLOCK_SIZE];
  254. memset(temp_buffer, 0, sizeof(temp_buffer));
  255. for(uint8_t i = 0; i < sizeof(source_map); ++i) {
  256. rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
  257. }
  258. // Send render data chunk after rotating
  259. if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  260. print("oled_render data failed\n");
  261. return;
  262. }
  263. }
  264. // Turn on display if it is off
  265. oled_on();
  266. // Clear dirty flag
  267. oled_dirty &= ~(1 << update_start);
  268. }
  269. void oled_set_cursor(uint8_t col, uint8_t line) {
  270. uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
  271. // Out of bounds?
  272. if (index >= OLED_MATRIX_SIZE) {
  273. index = 0;
  274. }
  275. oled_cursor = &oled_buffer[index];
  276. }
  277. void oled_advance_page(bool clearPageRemainder) {
  278. uint16_t index = oled_cursor - &oled_buffer[0];
  279. uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
  280. if (clearPageRemainder) {
  281. // Remaining Char count
  282. remaining = remaining / OLED_FONT_WIDTH;
  283. // Write empty character until next line
  284. while (remaining--)
  285. oled_write_char(' ', false);
  286. } else {
  287. // Next page index out of bounds?
  288. if (index + remaining >= OLED_MATRIX_SIZE) {
  289. index = 0;
  290. remaining = 0;
  291. }
  292. oled_cursor = &oled_buffer[index + remaining];
  293. }
  294. }
  295. void oled_advance_char(void) {
  296. uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
  297. uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
  298. // Do we have enough space on the current line for the next character
  299. if (remainingSpace < OLED_FONT_WIDTH) {
  300. nextIndex += remainingSpace;
  301. }
  302. // Did we go out of bounds
  303. if (nextIndex >= OLED_MATRIX_SIZE) {
  304. nextIndex = 0;
  305. }
  306. // Update cursor position
  307. oled_cursor = &oled_buffer[nextIndex];
  308. }
  309. // Main handler that writes character data to the display buffer
  310. void oled_write_char(const char data, bool invert) {
  311. // Advance to the next line if newline
  312. if (data == '\n') {
  313. // Old source wrote ' ' until end of line...
  314. oled_advance_page(true);
  315. return;
  316. }
  317. // copy the current render buffer to check for dirty after
  318. static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
  319. memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
  320. // set the reder buffer data
  321. uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
  322. if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
  323. memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
  324. } else {
  325. const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
  326. memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
  327. }
  328. // Invert if needed
  329. if (invert) {
  330. InvertCharacter(oled_cursor);
  331. }
  332. // Dirty check
  333. if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
  334. uint16_t index = oled_cursor - &oled_buffer[0];
  335. oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
  336. // Edgecase check if the written data spans the 2 chunks
  337. oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
  338. }
  339. // Finally move to the next char
  340. oled_advance_char();
  341. }
  342. void oled_write(const char *data, bool invert) {
  343. const char *end = data + strlen(data);
  344. while (data < end) {
  345. oled_write_char(*data, invert);
  346. data++;
  347. }
  348. }
  349. void oled_write_ln(const char *data, bool invert) {
  350. oled_write(data, invert);
  351. oled_advance_page(true);
  352. }
  353. #if defined(__AVR__)
  354. void oled_write_P(const char *data, bool invert) {
  355. uint8_t c = pgm_read_byte(data);
  356. while (c != 0) {
  357. oled_write_char(c, invert);
  358. c = pgm_read_byte(++data);
  359. }
  360. }
  361. void oled_write_ln_P(const char *data, bool invert) {
  362. oled_write_P(data, invert);
  363. oled_advance_page(true);
  364. }
  365. #endif // defined(__AVR__)
  366. bool oled_on(void) {
  367. #if !defined(OLED_DISABLE_TIMEOUT)
  368. oled_last_activity = timer_read();
  369. #endif
  370. static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON };
  371. if (!oled_active) {
  372. if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
  373. print("oled_on cmd failed\n");
  374. return oled_active;
  375. }
  376. oled_active = true;
  377. }
  378. return oled_active;
  379. }
  380. bool oled_off(void) {
  381. static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF };
  382. if (oled_active) {
  383. if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
  384. print("oled_off cmd failed\n");
  385. return oled_active;
  386. }
  387. oled_active = false;
  388. }
  389. return !oled_active;
  390. }
  391. bool oled_scroll_right(void) {
  392. // Dont enable scrolling if we need to update the display
  393. // This prevents scrolling of bad data from starting the scroll too early after init
  394. if (!oled_dirty && !oled_scrolling) {
  395. static const uint8_t PROGMEM display_scroll_right[] = {
  396. I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
  397. if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
  398. print("oled_scroll_right cmd failed\n");
  399. return oled_scrolling;
  400. }
  401. oled_scrolling = true;
  402. }
  403. return oled_scrolling;
  404. }
  405. bool oled_scroll_left(void) {
  406. // Dont enable scrolling if we need to update the display
  407. // This prevents scrolling of bad data from starting the scroll too early after init
  408. if (!oled_dirty && !oled_scrolling) {
  409. static const uint8_t PROGMEM display_scroll_left[] = {
  410. I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
  411. if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
  412. print("oled_scroll_left cmd failed\n");
  413. return oled_scrolling;
  414. }
  415. oled_scrolling = true;
  416. }
  417. return oled_scrolling;
  418. }
  419. bool oled_scroll_off(void) {
  420. if (oled_scrolling) {
  421. static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL };
  422. if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
  423. print("oled_scroll_off cmd failed\n");
  424. return oled_scrolling;
  425. }
  426. oled_scrolling = false;
  427. }
  428. return !oled_scrolling;
  429. }
  430. uint8_t oled_max_chars(void) {
  431. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  432. return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
  433. }
  434. return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
  435. }
  436. uint8_t oled_max_lines(void) {
  437. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  438. return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
  439. }
  440. return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
  441. }
  442. void oled_task(void) {
  443. if (!oled_initialized) {
  444. return;
  445. }
  446. oled_set_cursor(0, 0);
  447. oled_task_user();
  448. // Smart render system, no need to check for dirty
  449. oled_render();
  450. // Display timeout check
  451. #if !defined(OLED_DISABLE_TIMEOUT)
  452. if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
  453. oled_off();
  454. }
  455. #endif
  456. }
  457. __attribute__((weak))
  458. void oled_task_user(void) {
  459. }