quantum.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. #include "quantum.h"
  2. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  3. switch (code) {
  4. case QK_MODS ... QK_MODS_MAX:
  5. break;
  6. default:
  7. return;
  8. }
  9. if (code & QK_LCTL)
  10. f(KC_LCTL);
  11. if (code & QK_LSFT)
  12. f(KC_LSFT);
  13. if (code & QK_LALT)
  14. f(KC_LALT);
  15. if (code & QK_LGUI)
  16. f(KC_LGUI);
  17. if (code & QK_RCTL)
  18. f(KC_RCTL);
  19. if (code & QK_RSFT)
  20. f(KC_RSFT);
  21. if (code & QK_RALT)
  22. f(KC_RALT);
  23. if (code & QK_RGUI)
  24. f(KC_RGUI);
  25. }
  26. void register_code16 (uint16_t code) {
  27. do_code16 (code, register_code);
  28. register_code (code);
  29. }
  30. void unregister_code16 (uint16_t code) {
  31. unregister_code (code);
  32. do_code16 (code, unregister_code);
  33. }
  34. __attribute__ ((weak))
  35. bool process_action_kb(keyrecord_t *record) {
  36. return true;
  37. }
  38. __attribute__ ((weak))
  39. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  40. return process_record_user(keycode, record);
  41. }
  42. __attribute__ ((weak))
  43. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  44. return true;
  45. }
  46. void reset_keyboard(void) {
  47. clear_keyboard();
  48. #ifdef AUDIO_ENABLE
  49. stop_all_notes();
  50. shutdown_user();
  51. #endif
  52. wait_ms(250);
  53. #ifdef CATERINA_BOOTLOADER
  54. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  55. #endif
  56. bootloader_jump();
  57. }
  58. // Shift / paren setup
  59. #ifndef LSPO_KEY
  60. #define LSPO_KEY KC_9
  61. #endif
  62. #ifndef RSPC_KEY
  63. #define RSPC_KEY KC_0
  64. #endif
  65. static bool shift_interrupted[2] = {0, 0};
  66. bool process_record_quantum(keyrecord_t *record) {
  67. /* This gets the keycode from the key pressed */
  68. keypos_t key = record->event.key;
  69. uint16_t keycode;
  70. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  71. /* TODO: Use store_or_get_action() or a similar function. */
  72. if (!disable_action_cache) {
  73. uint8_t layer;
  74. if (record->event.pressed) {
  75. layer = layer_switch_get_layer(key);
  76. update_source_layers_cache(key, layer);
  77. } else {
  78. layer = read_source_layers_cache(key);
  79. }
  80. keycode = keymap_key_to_keycode(layer, key);
  81. } else
  82. #endif
  83. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  84. // This is how you use actions here
  85. // if (keycode == KC_LEAD) {
  86. // action_t action;
  87. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  88. // process_action(record, action);
  89. // return false;
  90. // }
  91. if (!(
  92. process_record_kb(keycode, record) &&
  93. #ifdef MIDI_ENABLE
  94. process_midi(keycode, record) &&
  95. #endif
  96. #ifdef AUDIO_ENABLE
  97. process_music(keycode, record) &&
  98. #endif
  99. #ifdef TAP_DANCE_ENABLE
  100. process_tap_dance(keycode, record) &&
  101. #endif
  102. #ifndef DISABLE_LEADER
  103. process_leader(keycode, record) &&
  104. #endif
  105. #ifndef DISABLE_CHORDING
  106. process_chording(keycode, record) &&
  107. #endif
  108. #ifdef UNICODE_ENABLE
  109. process_unicode(keycode, record) &&
  110. #endif
  111. #ifdef UCIS_ENABLE
  112. process_ucis(keycode, record) &&
  113. #endif
  114. #ifdef PRINTING_ENABLE
  115. process_printer(keycode, record) &&
  116. #ifdef UNICODEMAP_ENABLE
  117. process_unicode_map(keycode, record) &&
  118. #endif
  119. true)) {
  120. return false;
  121. }
  122. // Shift / paren setup
  123. switch(keycode) {
  124. case RESET:
  125. if (record->event.pressed) {
  126. reset_keyboard();
  127. }
  128. return false;
  129. break;
  130. case DEBUG:
  131. if (record->event.pressed) {
  132. print("\nDEBUG: enabled.\n");
  133. debug_enable = true;
  134. }
  135. return false;
  136. break;
  137. #ifdef RGBLIGHT_ENABLE
  138. case RGB_TOG:
  139. if (record->event.pressed) {
  140. rgblight_toggle();
  141. }
  142. return false;
  143. break;
  144. case RGB_MOD:
  145. if (record->event.pressed) {
  146. rgblight_step();
  147. }
  148. return false;
  149. break;
  150. case RGB_HUI:
  151. if (record->event.pressed) {
  152. rgblight_increase_hue();
  153. }
  154. return false;
  155. break;
  156. case RGB_HUD:
  157. if (record->event.pressed) {
  158. rgblight_decrease_hue();
  159. }
  160. return false;
  161. break;
  162. case RGB_SAI:
  163. if (record->event.pressed) {
  164. rgblight_increase_sat();
  165. }
  166. return false;
  167. break;
  168. case RGB_SAD:
  169. if (record->event.pressed) {
  170. rgblight_decrease_sat();
  171. }
  172. return false;
  173. break;
  174. case RGB_VAI:
  175. if (record->event.pressed) {
  176. rgblight_increase_val();
  177. }
  178. return false;
  179. break;
  180. case RGB_VAD:
  181. if (record->event.pressed) {
  182. rgblight_decrease_val();
  183. }
  184. return false;
  185. break;
  186. #endif
  187. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  188. if (record->event.pressed) {
  189. // MAGIC actions (BOOTMAGIC without the boot)
  190. if (!eeconfig_is_enabled()) {
  191. eeconfig_init();
  192. }
  193. /* keymap config */
  194. keymap_config.raw = eeconfig_read_keymap();
  195. switch (keycode)
  196. {
  197. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  198. keymap_config.swap_control_capslock = true;
  199. break;
  200. case MAGIC_CAPSLOCK_TO_CONTROL:
  201. keymap_config.capslock_to_control = true;
  202. break;
  203. case MAGIC_SWAP_LALT_LGUI:
  204. keymap_config.swap_lalt_lgui = true;
  205. break;
  206. case MAGIC_SWAP_RALT_RGUI:
  207. keymap_config.swap_ralt_rgui = true;
  208. break;
  209. case MAGIC_NO_GUI:
  210. keymap_config.no_gui = true;
  211. break;
  212. case MAGIC_SWAP_GRAVE_ESC:
  213. keymap_config.swap_grave_esc = true;
  214. break;
  215. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  216. keymap_config.swap_backslash_backspace = true;
  217. break;
  218. case MAGIC_HOST_NKRO:
  219. keymap_config.nkro = true;
  220. break;
  221. case MAGIC_SWAP_ALT_GUI:
  222. keymap_config.swap_lalt_lgui = true;
  223. keymap_config.swap_ralt_rgui = true;
  224. break;
  225. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  226. keymap_config.swap_control_capslock = false;
  227. break;
  228. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  229. keymap_config.capslock_to_control = false;
  230. break;
  231. case MAGIC_UNSWAP_LALT_LGUI:
  232. keymap_config.swap_lalt_lgui = false;
  233. break;
  234. case MAGIC_UNSWAP_RALT_RGUI:
  235. keymap_config.swap_ralt_rgui = false;
  236. break;
  237. case MAGIC_UNNO_GUI:
  238. keymap_config.no_gui = false;
  239. break;
  240. case MAGIC_UNSWAP_GRAVE_ESC:
  241. keymap_config.swap_grave_esc = false;
  242. break;
  243. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  244. keymap_config.swap_backslash_backspace = false;
  245. break;
  246. case MAGIC_UNHOST_NKRO:
  247. keymap_config.nkro = false;
  248. break;
  249. case MAGIC_UNSWAP_ALT_GUI:
  250. keymap_config.swap_lalt_lgui = false;
  251. keymap_config.swap_ralt_rgui = false;
  252. break;
  253. case MAGIC_TOGGLE_NKRO:
  254. keymap_config.nkro = !keymap_config.nkro;
  255. break;
  256. default:
  257. break;
  258. }
  259. eeconfig_update_keymap(keymap_config.raw);
  260. clear_keyboard(); // clear to prevent stuck keys
  261. return false;
  262. }
  263. break;
  264. case KC_LSPO: {
  265. if (record->event.pressed) {
  266. shift_interrupted[0] = false;
  267. register_mods(MOD_BIT(KC_LSFT));
  268. }
  269. else {
  270. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  271. if (get_mods() & MOD_BIT(KC_RSFT)) {
  272. shift_interrupted[0] = true;
  273. shift_interrupted[1] = true;
  274. }
  275. #endif
  276. if (!shift_interrupted[0]) {
  277. register_code(LSPO_KEY);
  278. unregister_code(LSPO_KEY);
  279. }
  280. unregister_mods(MOD_BIT(KC_LSFT));
  281. }
  282. return false;
  283. // break;
  284. }
  285. case KC_RSPC: {
  286. if (record->event.pressed) {
  287. shift_interrupted[1] = false;
  288. register_mods(MOD_BIT(KC_RSFT));
  289. }
  290. else {
  291. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  292. if (get_mods() & MOD_BIT(KC_LSFT)) {
  293. shift_interrupted[0] = true;
  294. shift_interrupted[1] = true;
  295. }
  296. #endif
  297. if (!shift_interrupted[1]) {
  298. register_code(RSPC_KEY);
  299. unregister_code(RSPC_KEY);
  300. }
  301. unregister_mods(MOD_BIT(KC_RSFT));
  302. }
  303. return false;
  304. // break;
  305. }
  306. default: {
  307. shift_interrupted[0] = true;
  308. shift_interrupted[1] = true;
  309. break;
  310. }
  311. }
  312. return process_action_kb(record);
  313. }
  314. const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
  315. 0, 0, 0, 0, 0, 0, 0, 0,
  316. 0, 0, 0, 0, 0, 0, 0, 0,
  317. 0, 0, 0, 0, 0, 0, 0, 0,
  318. 0, 0, 0, 0, 0, 0, 0, 0,
  319. 0, 1, 1, 1, 1, 1, 1, 0,
  320. 1, 1, 1, 1, 0, 0, 0, 0,
  321. 0, 0, 0, 0, 0, 0, 0, 0,
  322. 0, 0, 1, 0, 1, 0, 1, 1,
  323. 1, 1, 1, 1, 1, 1, 1, 1,
  324. 1, 1, 1, 1, 1, 1, 1, 1,
  325. 1, 1, 1, 1, 1, 1, 1, 1,
  326. 1, 1, 1, 0, 0, 0, 1, 1,
  327. 0, 0, 0, 0, 0, 0, 0, 0,
  328. 0, 0, 0, 0, 0, 0, 0, 0,
  329. 0, 0, 0, 0, 0, 0, 0, 0,
  330. 0, 0, 0, 1, 1, 1, 1, 0
  331. };
  332. const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
  333. 0, 0, 0, 0, 0, 0, 0, 0,
  334. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  335. 0, 0, 0, 0, 0, 0, 0, 0,
  336. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  337. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  338. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  339. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  340. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  341. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  342. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  343. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  344. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  345. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  346. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  347. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  348. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  349. };
  350. /* for users whose OSes are set to Colemak */
  351. #if 0
  352. #include "keymap_colemak.h"
  353. const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
  354. 0, 0, 0, 0, 0, 0, 0, 0,
  355. 0, 0, 0, 0, 0, 0, 0, 0,
  356. 0, 0, 0, 0, 0, 0, 0, 0,
  357. 0, 0, 0, 0, 0, 0, 0, 0,
  358. 0, 1, 1, 1, 1, 1, 1, 0,
  359. 1, 1, 1, 1, 0, 0, 0, 0,
  360. 0, 0, 0, 0, 0, 0, 0, 0,
  361. 0, 0, 1, 0, 1, 0, 1, 1,
  362. 1, 1, 1, 1, 1, 1, 1, 1,
  363. 1, 1, 1, 1, 1, 1, 1, 1,
  364. 1, 1, 1, 1, 1, 1, 1, 1,
  365. 1, 1, 1, 0, 0, 0, 1, 1,
  366. 0, 0, 0, 0, 0, 0, 0, 0,
  367. 0, 0, 0, 0, 0, 0, 0, 0,
  368. 0, 0, 0, 0, 0, 0, 0, 0,
  369. 0, 0, 0, 1, 1, 1, 1, 0
  370. };
  371. const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
  372. 0, 0, 0, 0, 0, 0, 0, 0,
  373. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  374. 0, 0, 0, 0, 0, 0, 0, 0,
  375. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  376. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  377. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  378. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  379. KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  380. KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  381. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  382. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  383. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  384. KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  385. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  386. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  387. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  388. };
  389. #endif
  390. void send_string(const char *str) {
  391. while (1) {
  392. uint8_t keycode;
  393. uint8_t ascii_code = pgm_read_byte(str);
  394. if (!ascii_code) break;
  395. keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
  396. if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
  397. register_code(KC_LSFT);
  398. register_code(keycode);
  399. unregister_code(keycode);
  400. unregister_code(KC_LSFT);
  401. }
  402. else {
  403. register_code(keycode);
  404. unregister_code(keycode);
  405. }
  406. ++str;
  407. }
  408. }
  409. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  410. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  411. layer_on(layer3);
  412. } else {
  413. layer_off(layer3);
  414. }
  415. }
  416. void tap_random_base64(void) {
  417. #if defined(__AVR_ATmega32U4__)
  418. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  419. #else
  420. uint8_t key = rand() % 64;
  421. #endif
  422. switch (key) {
  423. case 0 ... 25:
  424. register_code(KC_LSFT);
  425. register_code(key + KC_A);
  426. unregister_code(key + KC_A);
  427. unregister_code(KC_LSFT);
  428. break;
  429. case 26 ... 51:
  430. register_code(key - 26 + KC_A);
  431. unregister_code(key - 26 + KC_A);
  432. break;
  433. case 52:
  434. register_code(KC_0);
  435. unregister_code(KC_0);
  436. break;
  437. case 53 ... 61:
  438. register_code(key - 53 + KC_1);
  439. unregister_code(key - 53 + KC_1);
  440. break;
  441. case 62:
  442. register_code(KC_LSFT);
  443. register_code(KC_EQL);
  444. unregister_code(KC_EQL);
  445. unregister_code(KC_LSFT);
  446. break;
  447. case 63:
  448. register_code(KC_SLSH);
  449. unregister_code(KC_SLSH);
  450. break;
  451. }
  452. }
  453. void matrix_init_quantum() {
  454. #ifdef BACKLIGHT_ENABLE
  455. backlight_init_ports();
  456. #endif
  457. matrix_init_kb();
  458. }
  459. void matrix_scan_quantum() {
  460. #ifdef AUDIO_ENABLE
  461. matrix_scan_music();
  462. #endif
  463. #ifdef TAP_DANCE_ENABLE
  464. matrix_scan_tap_dance();
  465. #endif
  466. matrix_scan_kb();
  467. }
  468. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  469. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  470. #if BACKLIGHT_PIN == B7
  471. # define COM1x1 COM1C1
  472. # define OCR1x OCR1C
  473. #elif BACKLIGHT_PIN == B6
  474. # define COM1x1 COM1B1
  475. # define OCR1x OCR1B
  476. #elif BACKLIGHT_PIN == B5
  477. # define COM1x1 COM1A1
  478. # define OCR1x OCR1A
  479. #else
  480. # error "Backlight pin not supported - use B5, B6, or B7"
  481. #endif
  482. __attribute__ ((weak))
  483. void backlight_init_ports(void)
  484. {
  485. // Setup backlight pin as output and output low.
  486. // DDRx |= n
  487. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  488. // PORTx &= ~n
  489. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  490. // Use full 16-bit resolution.
  491. ICR1 = 0xFFFF;
  492. // I could write a wall of text here to explain... but TL;DW
  493. // Go read the ATmega32u4 datasheet.
  494. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  495. // Pin PB7 = OCR1C (Timer 1, Channel C)
  496. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  497. // (i.e. start high, go low when counter matches.)
  498. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  499. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  500. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  501. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  502. backlight_init();
  503. #ifdef BACKLIGHT_BREATHING
  504. breathing_defaults();
  505. #endif
  506. }
  507. __attribute__ ((weak))
  508. void backlight_set(uint8_t level)
  509. {
  510. // Prevent backlight blink on lowest level
  511. // PORTx &= ~n
  512. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  513. if ( level == 0 ) {
  514. // Turn off PWM control on backlight pin, revert to output low.
  515. TCCR1A &= ~(_BV(COM1x1));
  516. OCR1x = 0x0;
  517. } else if ( level == BACKLIGHT_LEVELS ) {
  518. // Turn on PWM control of backlight pin
  519. TCCR1A |= _BV(COM1x1);
  520. // Set the brightness
  521. OCR1x = 0xFFFF;
  522. } else {
  523. // Turn on PWM control of backlight pin
  524. TCCR1A |= _BV(COM1x1);
  525. // Set the brightness
  526. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  527. }
  528. #ifdef BACKLIGHT_BREATHING
  529. breathing_intensity_default();
  530. #endif
  531. }
  532. #ifdef BACKLIGHT_BREATHING
  533. #define BREATHING_NO_HALT 0
  534. #define BREATHING_HALT_OFF 1
  535. #define BREATHING_HALT_ON 2
  536. static uint8_t breath_intensity;
  537. static uint8_t breath_speed;
  538. static uint16_t breathing_index;
  539. static uint8_t breathing_halt;
  540. void breathing_enable(void)
  541. {
  542. if (get_backlight_level() == 0)
  543. {
  544. breathing_index = 0;
  545. }
  546. else
  547. {
  548. // Set breathing_index to be at the midpoint (brightest point)
  549. breathing_index = 0x20 << breath_speed;
  550. }
  551. breathing_halt = BREATHING_NO_HALT;
  552. // Enable breathing interrupt
  553. TIMSK1 |= _BV(OCIE1A);
  554. }
  555. void breathing_pulse(void)
  556. {
  557. if (get_backlight_level() == 0)
  558. {
  559. breathing_index = 0;
  560. }
  561. else
  562. {
  563. // Set breathing_index to be at the midpoint + 1 (brightest point)
  564. breathing_index = 0x21 << breath_speed;
  565. }
  566. breathing_halt = BREATHING_HALT_ON;
  567. // Enable breathing interrupt
  568. TIMSK1 |= _BV(OCIE1A);
  569. }
  570. void breathing_disable(void)
  571. {
  572. // Disable breathing interrupt
  573. TIMSK1 &= ~_BV(OCIE1A);
  574. backlight_set(get_backlight_level());
  575. }
  576. void breathing_self_disable(void)
  577. {
  578. if (get_backlight_level() == 0)
  579. {
  580. breathing_halt = BREATHING_HALT_OFF;
  581. }
  582. else
  583. {
  584. breathing_halt = BREATHING_HALT_ON;
  585. }
  586. //backlight_set(get_backlight_level());
  587. }
  588. void breathing_toggle(void)
  589. {
  590. if (!is_breathing())
  591. {
  592. if (get_backlight_level() == 0)
  593. {
  594. breathing_index = 0;
  595. }
  596. else
  597. {
  598. // Set breathing_index to be at the midpoint + 1 (brightest point)
  599. breathing_index = 0x21 << breath_speed;
  600. }
  601. breathing_halt = BREATHING_NO_HALT;
  602. }
  603. // Toggle breathing interrupt
  604. TIMSK1 ^= _BV(OCIE1A);
  605. // Restore backlight level
  606. if (!is_breathing())
  607. {
  608. backlight_set(get_backlight_level());
  609. }
  610. }
  611. bool is_breathing(void)
  612. {
  613. return (TIMSK1 && _BV(OCIE1A));
  614. }
  615. void breathing_intensity_default(void)
  616. {
  617. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  618. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  619. }
  620. void breathing_intensity_set(uint8_t value)
  621. {
  622. breath_intensity = value;
  623. }
  624. void breathing_speed_default(void)
  625. {
  626. breath_speed = 4;
  627. }
  628. void breathing_speed_set(uint8_t value)
  629. {
  630. bool is_breathing_now = is_breathing();
  631. uint8_t old_breath_speed = breath_speed;
  632. if (is_breathing_now)
  633. {
  634. // Disable breathing interrupt
  635. TIMSK1 &= ~_BV(OCIE1A);
  636. }
  637. breath_speed = value;
  638. if (is_breathing_now)
  639. {
  640. // Adjust index to account for new speed
  641. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  642. // Enable breathing interrupt
  643. TIMSK1 |= _BV(OCIE1A);
  644. }
  645. }
  646. void breathing_speed_inc(uint8_t value)
  647. {
  648. if ((uint16_t)(breath_speed - value) > 10 )
  649. {
  650. breathing_speed_set(0);
  651. }
  652. else
  653. {
  654. breathing_speed_set(breath_speed - value);
  655. }
  656. }
  657. void breathing_speed_dec(uint8_t value)
  658. {
  659. if ((uint16_t)(breath_speed + value) > 10 )
  660. {
  661. breathing_speed_set(10);
  662. }
  663. else
  664. {
  665. breathing_speed_set(breath_speed + value);
  666. }
  667. }
  668. void breathing_defaults(void)
  669. {
  670. breathing_intensity_default();
  671. breathing_speed_default();
  672. breathing_halt = BREATHING_NO_HALT;
  673. }
  674. /* Breathing Sleep LED brighness(PWM On period) table
  675. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  676. *
  677. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  678. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  679. */
  680. static const uint8_t breathing_table[64] PROGMEM = {
  681. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  682. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  683. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  684. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  685. };
  686. ISR(TIMER1_COMPA_vect)
  687. {
  688. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  689. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  690. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  691. {
  692. // Disable breathing interrupt
  693. TIMSK1 &= ~_BV(OCIE1A);
  694. }
  695. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  696. }
  697. #endif // breathing
  698. #else // backlight
  699. __attribute__ ((weak))
  700. void backlight_init_ports(void)
  701. {
  702. }
  703. __attribute__ ((weak))
  704. void backlight_set(uint8_t level)
  705. {
  706. }
  707. #endif // backlight
  708. __attribute__ ((weak))
  709. void led_set_user(uint8_t usb_led) {
  710. }
  711. __attribute__ ((weak))
  712. void led_set_kb(uint8_t usb_led) {
  713. led_set_user(usb_led);
  714. }
  715. __attribute__ ((weak))
  716. void led_init_ports(void)
  717. {
  718. }
  719. __attribute__ ((weak))
  720. void led_set(uint8_t usb_led)
  721. {
  722. // Example LED Code
  723. //
  724. // // Using PE6 Caps Lock LED
  725. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  726. // {
  727. // // Output high.
  728. // DDRE |= (1<<6);
  729. // PORTE |= (1<<6);
  730. // }
  731. // else
  732. // {
  733. // // Output low.
  734. // DDRE &= ~(1<<6);
  735. // PORTE &= ~(1<<6);
  736. // }
  737. led_set_kb(usb_led);
  738. }
  739. //------------------------------------------------------------------------------
  740. // Override these functions in your keymap file to play different tunes on
  741. // different events such as startup and bootloader jump
  742. __attribute__ ((weak))
  743. void startup_user() {}
  744. __attribute__ ((weak))
  745. void shutdown_user() {}
  746. //------------------------------------------------------------------------------