quantum.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #ifdef PROTOCOL_LUFA
  18. #include "outputselect.h"
  19. #endif
  20. #ifndef TAPPING_TERM
  21. #define TAPPING_TERM 200
  22. #endif
  23. #ifndef BREATHING_PERIOD
  24. #define BREATHING_PERIOD 6
  25. #endif
  26. #include "backlight.h"
  27. extern backlight_config_t backlight_config;
  28. #ifdef FAUXCLICKY_ENABLE
  29. #include "fauxclicky.h"
  30. #endif
  31. #ifdef API_ENABLE
  32. #include "api.h"
  33. #endif
  34. #ifdef MIDI_ENABLE
  35. #include "process_midi.h"
  36. #endif
  37. #ifdef AUDIO_ENABLE
  38. #ifndef GOODBYE_SONG
  39. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  40. #endif
  41. #ifndef AG_NORM_SONG
  42. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  43. #endif
  44. #ifndef AG_SWAP_SONG
  45. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  46. #endif
  47. float goodbye_song[][2] = GOODBYE_SONG;
  48. float ag_norm_song[][2] = AG_NORM_SONG;
  49. float ag_swap_song[][2] = AG_SWAP_SONG;
  50. #ifdef DEFAULT_LAYER_SONGS
  51. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  52. #endif
  53. #endif
  54. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  55. switch (code) {
  56. case QK_MODS ... QK_MODS_MAX:
  57. break;
  58. default:
  59. return;
  60. }
  61. if (code & QK_LCTL)
  62. f(KC_LCTL);
  63. if (code & QK_LSFT)
  64. f(KC_LSFT);
  65. if (code & QK_LALT)
  66. f(KC_LALT);
  67. if (code & QK_LGUI)
  68. f(KC_LGUI);
  69. if (code < QK_RMODS_MIN) return;
  70. if (code & QK_RCTL)
  71. f(KC_RCTL);
  72. if (code & QK_RSFT)
  73. f(KC_RSFT);
  74. if (code & QK_RALT)
  75. f(KC_RALT);
  76. if (code & QK_RGUI)
  77. f(KC_RGUI);
  78. }
  79. static inline void qk_register_weak_mods(uint8_t kc) {
  80. add_weak_mods(MOD_BIT(kc));
  81. send_keyboard_report();
  82. }
  83. static inline void qk_unregister_weak_mods(uint8_t kc) {
  84. del_weak_mods(MOD_BIT(kc));
  85. send_keyboard_report();
  86. }
  87. static inline void qk_register_mods(uint8_t kc) {
  88. add_weak_mods(MOD_BIT(kc));
  89. send_keyboard_report();
  90. }
  91. static inline void qk_unregister_mods(uint8_t kc) {
  92. del_weak_mods(MOD_BIT(kc));
  93. send_keyboard_report();
  94. }
  95. void register_code16 (uint16_t code) {
  96. if (IS_MOD(code) || code == KC_NO) {
  97. do_code16 (code, qk_register_mods);
  98. } else {
  99. do_code16 (code, qk_register_weak_mods);
  100. }
  101. register_code (code);
  102. }
  103. void unregister_code16 (uint16_t code) {
  104. unregister_code (code);
  105. if (IS_MOD(code) || code == KC_NO) {
  106. do_code16 (code, qk_unregister_mods);
  107. } else {
  108. do_code16 (code, qk_unregister_weak_mods);
  109. }
  110. }
  111. __attribute__ ((weak))
  112. bool process_action_kb(keyrecord_t *record) {
  113. return true;
  114. }
  115. __attribute__ ((weak))
  116. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  117. return process_record_user(keycode, record);
  118. }
  119. __attribute__ ((weak))
  120. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  121. return true;
  122. }
  123. void reset_keyboard(void) {
  124. clear_keyboard();
  125. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  126. process_midi_all_notes_off();
  127. #endif
  128. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  129. music_all_notes_off();
  130. uint16_t timer_start = timer_read();
  131. PLAY_SONG(goodbye_song);
  132. shutdown_user();
  133. while(timer_elapsed(timer_start) < 250)
  134. wait_ms(1);
  135. stop_all_notes();
  136. #else
  137. wait_ms(250);
  138. #endif
  139. // this is also done later in bootloader.c - not sure if it's neccesary here
  140. #ifdef BOOTLOADER_CATERINA
  141. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  142. #endif
  143. bootloader_jump();
  144. }
  145. // Shift / paren setup
  146. #ifndef LSPO_KEY
  147. #define LSPO_KEY KC_9
  148. #endif
  149. #ifndef RSPC_KEY
  150. #define RSPC_KEY KC_0
  151. #endif
  152. // Shift / Enter setup
  153. #ifndef SFTENT_KEY
  154. #define SFTENT_KEY KC_ENT
  155. #endif
  156. static bool shift_interrupted[2] = {0, 0};
  157. static uint16_t scs_timer[2] = {0, 0};
  158. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  159. * Used to ensure that the correct keycode is released if the key is released.
  160. */
  161. static bool grave_esc_was_shifted = false;
  162. bool process_record_quantum(keyrecord_t *record) {
  163. /* This gets the keycode from the key pressed */
  164. keypos_t key = record->event.key;
  165. uint16_t keycode;
  166. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  167. /* TODO: Use store_or_get_action() or a similar function. */
  168. if (!disable_action_cache) {
  169. uint8_t layer;
  170. if (record->event.pressed) {
  171. layer = layer_switch_get_layer(key);
  172. update_source_layers_cache(key, layer);
  173. } else {
  174. layer = read_source_layers_cache(key);
  175. }
  176. keycode = keymap_key_to_keycode(layer, key);
  177. } else
  178. #endif
  179. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  180. // This is how you use actions here
  181. // if (keycode == KC_LEAD) {
  182. // action_t action;
  183. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  184. // process_action(record, action);
  185. // return false;
  186. // }
  187. #ifdef TAP_DANCE_ENABLE
  188. preprocess_tap_dance(keycode, record);
  189. #endif
  190. if (!(
  191. #if defined(KEY_LOCK_ENABLE)
  192. // Must run first to be able to mask key_up events.
  193. process_key_lock(&keycode, record) &&
  194. #endif
  195. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  196. process_clicky(keycode, record) &&
  197. #endif //AUDIO_CLICKY
  198. process_record_kb(keycode, record) &&
  199. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  200. process_midi(keycode, record) &&
  201. #endif
  202. #ifdef AUDIO_ENABLE
  203. process_audio(keycode, record) &&
  204. #endif
  205. #ifdef STENO_ENABLE
  206. process_steno(keycode, record) &&
  207. #endif
  208. #if ( defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  209. process_music(keycode, record) &&
  210. #endif
  211. #ifdef TAP_DANCE_ENABLE
  212. process_tap_dance(keycode, record) &&
  213. #endif
  214. #ifndef DISABLE_LEADER
  215. process_leader(keycode, record) &&
  216. #endif
  217. #ifndef DISABLE_CHORDING
  218. process_chording(keycode, record) &&
  219. #endif
  220. #ifdef COMBO_ENABLE
  221. process_combo(keycode, record) &&
  222. #endif
  223. #ifdef UNICODE_ENABLE
  224. process_unicode(keycode, record) &&
  225. #endif
  226. #ifdef UCIS_ENABLE
  227. process_ucis(keycode, record) &&
  228. #endif
  229. #ifdef PRINTING_ENABLE
  230. process_printer(keycode, record) &&
  231. #endif
  232. #ifdef AUTO_SHIFT_ENABLE
  233. process_auto_shift(keycode, record) &&
  234. #endif
  235. #ifdef UNICODEMAP_ENABLE
  236. process_unicode_map(keycode, record) &&
  237. #endif
  238. #ifdef TERMINAL_ENABLE
  239. process_terminal(keycode, record) &&
  240. #endif
  241. true)) {
  242. return false;
  243. }
  244. // Shift / paren setup
  245. switch(keycode) {
  246. case RESET:
  247. if (record->event.pressed) {
  248. reset_keyboard();
  249. }
  250. return false;
  251. case DEBUG:
  252. if (record->event.pressed) {
  253. debug_enable = true;
  254. print("DEBUG: enabled.\n");
  255. }
  256. return false;
  257. #ifdef FAUXCLICKY_ENABLE
  258. case FC_TOG:
  259. if (record->event.pressed) {
  260. FAUXCLICKY_TOGGLE;
  261. }
  262. return false;
  263. case FC_ON:
  264. if (record->event.pressed) {
  265. FAUXCLICKY_ON;
  266. }
  267. return false;
  268. case FC_OFF:
  269. if (record->event.pressed) {
  270. FAUXCLICKY_OFF;
  271. }
  272. return false;
  273. #endif
  274. #ifdef RGBLIGHT_ENABLE
  275. case RGB_TOG:
  276. if (record->event.pressed) {
  277. rgblight_toggle();
  278. }
  279. return false;
  280. case RGB_MODE_FORWARD:
  281. if (record->event.pressed) {
  282. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  283. if(shifted) {
  284. rgblight_step_reverse();
  285. }
  286. else {
  287. rgblight_step();
  288. }
  289. }
  290. return false;
  291. case RGB_MODE_REVERSE:
  292. if (record->event.pressed) {
  293. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  294. if(shifted) {
  295. rgblight_step();
  296. }
  297. else {
  298. rgblight_step_reverse();
  299. }
  300. }
  301. return false;
  302. case RGB_HUI:
  303. if (record->event.pressed) {
  304. rgblight_increase_hue();
  305. }
  306. return false;
  307. case RGB_HUD:
  308. if (record->event.pressed) {
  309. rgblight_decrease_hue();
  310. }
  311. return false;
  312. case RGB_SAI:
  313. if (record->event.pressed) {
  314. rgblight_increase_sat();
  315. }
  316. return false;
  317. case RGB_SAD:
  318. if (record->event.pressed) {
  319. rgblight_decrease_sat();
  320. }
  321. return false;
  322. case RGB_VAI:
  323. if (record->event.pressed) {
  324. rgblight_increase_val();
  325. }
  326. return false;
  327. case RGB_VAD:
  328. if (record->event.pressed) {
  329. rgblight_decrease_val();
  330. }
  331. return false;
  332. case RGB_MODE_PLAIN:
  333. if (record->event.pressed) {
  334. rgblight_mode(1);
  335. }
  336. return false;
  337. case RGB_MODE_BREATHE:
  338. if (record->event.pressed) {
  339. if ((2 <= rgblight_get_mode()) && (rgblight_get_mode() < 5)) {
  340. rgblight_step();
  341. } else {
  342. rgblight_mode(2);
  343. }
  344. }
  345. return false;
  346. case RGB_MODE_RAINBOW:
  347. if (record->event.pressed) {
  348. if ((6 <= rgblight_get_mode()) && (rgblight_get_mode() < 8)) {
  349. rgblight_step();
  350. } else {
  351. rgblight_mode(6);
  352. }
  353. }
  354. return false;
  355. case RGB_MODE_SWIRL:
  356. if (record->event.pressed) {
  357. if ((9 <= rgblight_get_mode()) && (rgblight_get_mode() < 14)) {
  358. rgblight_step();
  359. } else {
  360. rgblight_mode(9);
  361. }
  362. }
  363. return false;
  364. case RGB_MODE_SNAKE:
  365. if (record->event.pressed) {
  366. if ((15 <= rgblight_get_mode()) && (rgblight_get_mode() < 20)) {
  367. rgblight_step();
  368. } else {
  369. rgblight_mode(15);
  370. }
  371. }
  372. return false;
  373. case RGB_MODE_KNIGHT:
  374. if (record->event.pressed) {
  375. if ((21 <= rgblight_get_mode()) && (rgblight_get_mode() < 23)) {
  376. rgblight_step();
  377. } else {
  378. rgblight_mode(21);
  379. }
  380. }
  381. return false;
  382. case RGB_MODE_XMAS:
  383. if (record->event.pressed) {
  384. rgblight_mode(24);
  385. }
  386. return false;
  387. case RGB_MODE_GRADIENT:
  388. if (record->event.pressed) {
  389. if ((25 <= rgblight_get_mode()) && (rgblight_get_mode() < 34)) {
  390. rgblight_step();
  391. } else {
  392. rgblight_mode(25);
  393. }
  394. }
  395. return false;
  396. #endif
  397. #ifdef PROTOCOL_LUFA
  398. case OUT_AUTO:
  399. if (record->event.pressed) {
  400. set_output(OUTPUT_AUTO);
  401. }
  402. return false;
  403. case OUT_USB:
  404. if (record->event.pressed) {
  405. set_output(OUTPUT_USB);
  406. }
  407. return false;
  408. #ifdef BLUETOOTH_ENABLE
  409. case OUT_BT:
  410. if (record->event.pressed) {
  411. set_output(OUTPUT_BLUETOOTH);
  412. }
  413. return false;
  414. #endif
  415. #endif
  416. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  417. if (record->event.pressed) {
  418. // MAGIC actions (BOOTMAGIC without the boot)
  419. if (!eeconfig_is_enabled()) {
  420. eeconfig_init();
  421. }
  422. /* keymap config */
  423. keymap_config.raw = eeconfig_read_keymap();
  424. switch (keycode)
  425. {
  426. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  427. keymap_config.swap_control_capslock = true;
  428. break;
  429. case MAGIC_CAPSLOCK_TO_CONTROL:
  430. keymap_config.capslock_to_control = true;
  431. break;
  432. case MAGIC_SWAP_LALT_LGUI:
  433. keymap_config.swap_lalt_lgui = true;
  434. break;
  435. case MAGIC_SWAP_RALT_RGUI:
  436. keymap_config.swap_ralt_rgui = true;
  437. break;
  438. case MAGIC_NO_GUI:
  439. keymap_config.no_gui = true;
  440. break;
  441. case MAGIC_SWAP_GRAVE_ESC:
  442. keymap_config.swap_grave_esc = true;
  443. break;
  444. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  445. keymap_config.swap_backslash_backspace = true;
  446. break;
  447. case MAGIC_HOST_NKRO:
  448. keymap_config.nkro = true;
  449. break;
  450. case MAGIC_SWAP_ALT_GUI:
  451. keymap_config.swap_lalt_lgui = true;
  452. keymap_config.swap_ralt_rgui = true;
  453. #ifdef AUDIO_ENABLE
  454. PLAY_SONG(ag_swap_song);
  455. #endif
  456. break;
  457. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  458. keymap_config.swap_control_capslock = false;
  459. break;
  460. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  461. keymap_config.capslock_to_control = false;
  462. break;
  463. case MAGIC_UNSWAP_LALT_LGUI:
  464. keymap_config.swap_lalt_lgui = false;
  465. break;
  466. case MAGIC_UNSWAP_RALT_RGUI:
  467. keymap_config.swap_ralt_rgui = false;
  468. break;
  469. case MAGIC_UNNO_GUI:
  470. keymap_config.no_gui = false;
  471. break;
  472. case MAGIC_UNSWAP_GRAVE_ESC:
  473. keymap_config.swap_grave_esc = false;
  474. break;
  475. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  476. keymap_config.swap_backslash_backspace = false;
  477. break;
  478. case MAGIC_UNHOST_NKRO:
  479. keymap_config.nkro = false;
  480. break;
  481. case MAGIC_UNSWAP_ALT_GUI:
  482. keymap_config.swap_lalt_lgui = false;
  483. keymap_config.swap_ralt_rgui = false;
  484. #ifdef AUDIO_ENABLE
  485. PLAY_SONG(ag_norm_song);
  486. #endif
  487. break;
  488. case MAGIC_TOGGLE_NKRO:
  489. keymap_config.nkro = !keymap_config.nkro;
  490. break;
  491. default:
  492. break;
  493. }
  494. eeconfig_update_keymap(keymap_config.raw);
  495. clear_keyboard(); // clear to prevent stuck keys
  496. return false;
  497. }
  498. break;
  499. case KC_LSPO: {
  500. if (record->event.pressed) {
  501. shift_interrupted[0] = false;
  502. scs_timer[0] = timer_read ();
  503. register_mods(MOD_BIT(KC_LSFT));
  504. }
  505. else {
  506. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  507. if (get_mods() & MOD_BIT(KC_RSFT)) {
  508. shift_interrupted[0] = true;
  509. shift_interrupted[1] = true;
  510. }
  511. #endif
  512. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  513. register_code(LSPO_KEY);
  514. unregister_code(LSPO_KEY);
  515. }
  516. unregister_mods(MOD_BIT(KC_LSFT));
  517. }
  518. return false;
  519. }
  520. case KC_RSPC: {
  521. if (record->event.pressed) {
  522. shift_interrupted[1] = false;
  523. scs_timer[1] = timer_read ();
  524. register_mods(MOD_BIT(KC_RSFT));
  525. }
  526. else {
  527. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  528. if (get_mods() & MOD_BIT(KC_LSFT)) {
  529. shift_interrupted[0] = true;
  530. shift_interrupted[1] = true;
  531. }
  532. #endif
  533. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  534. register_code(RSPC_KEY);
  535. unregister_code(RSPC_KEY);
  536. }
  537. unregister_mods(MOD_BIT(KC_RSFT));
  538. }
  539. return false;
  540. }
  541. case KC_SFTENT: {
  542. if (record->event.pressed) {
  543. shift_interrupted[1] = false;
  544. scs_timer[1] = timer_read ();
  545. register_mods(MOD_BIT(KC_RSFT));
  546. }
  547. else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  548. unregister_mods(MOD_BIT(KC_RSFT));
  549. register_code(SFTENT_KEY);
  550. unregister_code(SFTENT_KEY);
  551. }
  552. else {
  553. unregister_mods(MOD_BIT(KC_RSFT));
  554. }
  555. return false;
  556. }
  557. case GRAVE_ESC: {
  558. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  559. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  560. #ifdef GRAVE_ESC_ALT_OVERRIDE
  561. // if ALT is pressed, ESC is always sent
  562. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  563. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  564. shifted = 0;
  565. }
  566. #endif
  567. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  568. // if CTRL is pressed, ESC is always sent
  569. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  570. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  571. shifted = 0;
  572. }
  573. #endif
  574. #ifdef GRAVE_ESC_GUI_OVERRIDE
  575. // if GUI is pressed, ESC is always sent
  576. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  577. shifted = 0;
  578. }
  579. #endif
  580. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  581. // if SHIFT is pressed, ESC is always sent
  582. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  583. shifted = 0;
  584. }
  585. #endif
  586. if (record->event.pressed) {
  587. grave_esc_was_shifted = shifted;
  588. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  589. }
  590. else {
  591. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  592. }
  593. send_keyboard_report();
  594. return false;
  595. }
  596. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  597. case BL_BRTG: {
  598. if (record->event.pressed)
  599. breathing_toggle();
  600. return false;
  601. }
  602. #endif
  603. default: {
  604. shift_interrupted[0] = true;
  605. shift_interrupted[1] = true;
  606. break;
  607. }
  608. }
  609. return process_action_kb(record);
  610. }
  611. __attribute__ ((weak))
  612. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  613. 0, 0, 0, 0, 0, 0, 0, 0,
  614. 0, 0, 0, 0, 0, 0, 0, 0,
  615. 0, 0, 0, 0, 0, 0, 0, 0,
  616. 0, 0, 0, 0, 0, 0, 0, 0,
  617. 0, 1, 1, 1, 1, 1, 1, 0,
  618. 1, 1, 1, 1, 0, 0, 0, 0,
  619. 0, 0, 0, 0, 0, 0, 0, 0,
  620. 0, 0, 1, 0, 1, 0, 1, 1,
  621. 1, 1, 1, 1, 1, 1, 1, 1,
  622. 1, 1, 1, 1, 1, 1, 1, 1,
  623. 1, 1, 1, 1, 1, 1, 1, 1,
  624. 1, 1, 1, 0, 0, 0, 1, 1,
  625. 0, 0, 0, 0, 0, 0, 0, 0,
  626. 0, 0, 0, 0, 0, 0, 0, 0,
  627. 0, 0, 0, 0, 0, 0, 0, 0,
  628. 0, 0, 0, 1, 1, 1, 1, 0
  629. };
  630. __attribute__ ((weak))
  631. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  632. 0, 0, 0, 0, 0, 0, 0, 0,
  633. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  634. 0, 0, 0, 0, 0, 0, 0, 0,
  635. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  636. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  637. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  638. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  639. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  640. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  641. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  642. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  643. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  644. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  645. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  646. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  647. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  648. };
  649. void send_string(const char *str) {
  650. send_string_with_delay(str, 0);
  651. }
  652. void send_string_P(const char *str) {
  653. send_string_with_delay_P(str, 0);
  654. }
  655. void send_string_with_delay(const char *str, uint8_t interval) {
  656. while (1) {
  657. char ascii_code = *str;
  658. if (!ascii_code) break;
  659. if (ascii_code == 1) {
  660. // tap
  661. uint8_t keycode = *(++str);
  662. register_code(keycode);
  663. unregister_code(keycode);
  664. } else if (ascii_code == 2) {
  665. // down
  666. uint8_t keycode = *(++str);
  667. register_code(keycode);
  668. } else if (ascii_code == 3) {
  669. // up
  670. uint8_t keycode = *(++str);
  671. unregister_code(keycode);
  672. } else {
  673. send_char(ascii_code);
  674. }
  675. ++str;
  676. // interval
  677. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  678. }
  679. }
  680. void send_string_with_delay_P(const char *str, uint8_t interval) {
  681. while (1) {
  682. char ascii_code = pgm_read_byte(str);
  683. if (!ascii_code) break;
  684. if (ascii_code == 1) {
  685. // tap
  686. uint8_t keycode = pgm_read_byte(++str);
  687. register_code(keycode);
  688. unregister_code(keycode);
  689. } else if (ascii_code == 2) {
  690. // down
  691. uint8_t keycode = pgm_read_byte(++str);
  692. register_code(keycode);
  693. } else if (ascii_code == 3) {
  694. // up
  695. uint8_t keycode = pgm_read_byte(++str);
  696. unregister_code(keycode);
  697. } else {
  698. send_char(ascii_code);
  699. }
  700. ++str;
  701. // interval
  702. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  703. }
  704. }
  705. void send_char(char ascii_code) {
  706. uint8_t keycode;
  707. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  708. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  709. register_code(KC_LSFT);
  710. register_code(keycode);
  711. unregister_code(keycode);
  712. unregister_code(KC_LSFT);
  713. } else {
  714. register_code(keycode);
  715. unregister_code(keycode);
  716. }
  717. }
  718. void set_single_persistent_default_layer(uint8_t default_layer) {
  719. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  720. PLAY_SONG(default_layer_songs[default_layer]);
  721. #endif
  722. eeconfig_update_default_layer(1U<<default_layer);
  723. default_layer_set(1U<<default_layer);
  724. }
  725. uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  726. uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  727. uint32_t mask3 = 1UL << layer3;
  728. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  729. }
  730. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  731. layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
  732. }
  733. void tap_random_base64(void) {
  734. #if defined(__AVR_ATmega32U4__)
  735. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  736. #else
  737. uint8_t key = rand() % 64;
  738. #endif
  739. switch (key) {
  740. case 0 ... 25:
  741. register_code(KC_LSFT);
  742. register_code(key + KC_A);
  743. unregister_code(key + KC_A);
  744. unregister_code(KC_LSFT);
  745. break;
  746. case 26 ... 51:
  747. register_code(key - 26 + KC_A);
  748. unregister_code(key - 26 + KC_A);
  749. break;
  750. case 52:
  751. register_code(KC_0);
  752. unregister_code(KC_0);
  753. break;
  754. case 53 ... 61:
  755. register_code(key - 53 + KC_1);
  756. unregister_code(key - 53 + KC_1);
  757. break;
  758. case 62:
  759. register_code(KC_LSFT);
  760. register_code(KC_EQL);
  761. unregister_code(KC_EQL);
  762. unregister_code(KC_LSFT);
  763. break;
  764. case 63:
  765. register_code(KC_SLSH);
  766. unregister_code(KC_SLSH);
  767. break;
  768. }
  769. }
  770. void matrix_init_quantum() {
  771. #ifdef BACKLIGHT_ENABLE
  772. backlight_init_ports();
  773. #endif
  774. #ifdef AUDIO_ENABLE
  775. audio_init();
  776. #endif
  777. matrix_init_kb();
  778. }
  779. void matrix_scan_quantum() {
  780. #if defined(AUDIO_ENABLE)
  781. matrix_scan_music();
  782. #endif
  783. #ifdef TAP_DANCE_ENABLE
  784. matrix_scan_tap_dance();
  785. #endif
  786. #ifdef COMBO_ENABLE
  787. matrix_scan_combo();
  788. #endif
  789. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  790. backlight_task();
  791. #endif
  792. matrix_scan_kb();
  793. }
  794. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  795. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  796. // depending on the pin, we use a different output compare unit
  797. #if BACKLIGHT_PIN == B7
  798. # define COM1x1 COM1C1
  799. # define OCR1x OCR1C
  800. #elif BACKLIGHT_PIN == B6
  801. # define COM1x1 COM1B1
  802. # define OCR1x OCR1B
  803. #elif BACKLIGHT_PIN == B5
  804. # define COM1x1 COM1A1
  805. # define OCR1x OCR1A
  806. #else
  807. # define NO_HARDWARE_PWM
  808. #endif
  809. #ifndef BACKLIGHT_ON_STATE
  810. #define BACKLIGHT_ON_STATE 0
  811. #endif
  812. #ifdef NO_HARDWARE_PWM // pwm through software
  813. __attribute__ ((weak))
  814. void backlight_init_ports(void)
  815. {
  816. // Setup backlight pin as output and output to on state.
  817. // DDRx |= n
  818. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  819. #if BACKLIGHT_ON_STATE == 0
  820. // PORTx &= ~n
  821. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  822. #else
  823. // PORTx |= n
  824. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  825. #endif
  826. }
  827. __attribute__ ((weak))
  828. void backlight_set(uint8_t level) {}
  829. uint8_t backlight_tick = 0;
  830. #ifndef BACKLIGHT_CUSTOM_DRIVER
  831. void backlight_task(void) {
  832. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  833. #if BACKLIGHT_ON_STATE == 0
  834. // PORTx &= ~n
  835. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  836. #else
  837. // PORTx |= n
  838. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  839. #endif
  840. } else {
  841. #if BACKLIGHT_ON_STATE == 0
  842. // PORTx |= n
  843. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  844. #else
  845. // PORTx &= ~n
  846. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  847. #endif
  848. }
  849. backlight_tick = (backlight_tick + 1) % 16;
  850. }
  851. #endif
  852. #ifdef BACKLIGHT_BREATHING
  853. #ifndef BACKLIGHT_CUSTOM_DRIVER
  854. #error "Backlight breathing only available with hardware PWM. Please disable."
  855. #endif
  856. #endif
  857. #else // pwm through timer
  858. #define TIMER_TOP 0xFFFFU
  859. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  860. static uint16_t cie_lightness(uint16_t v) {
  861. if (v <= 5243) // if below 8% of max
  862. return v / 9; // same as dividing by 900%
  863. else {
  864. uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  865. // to get a useful result with integer division, we shift left in the expression above
  866. // and revert what we've done again after squaring.
  867. y = y * y * y >> 8;
  868. if (y > 0xFFFFUL) // prevent overflow
  869. return 0xFFFFU;
  870. else
  871. return (uint16_t) y;
  872. }
  873. }
  874. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  875. static inline void set_pwm(uint16_t val) {
  876. OCR1x = val;
  877. }
  878. #ifndef BACKLIGHT_CUSTOM_DRIVER
  879. __attribute__ ((weak))
  880. void backlight_set(uint8_t level) {
  881. if (level > BACKLIGHT_LEVELS)
  882. level = BACKLIGHT_LEVELS;
  883. if (level == 0) {
  884. // Turn off PWM control on backlight pin
  885. TCCR1A &= ~(_BV(COM1x1));
  886. } else {
  887. // Turn on PWM control of backlight pin
  888. TCCR1A |= _BV(COM1x1);
  889. }
  890. // Set the brightness
  891. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  892. }
  893. void backlight_task(void) {}
  894. #endif // BACKLIGHT_CUSTOM_DRIVER
  895. #ifdef BACKLIGHT_BREATHING
  896. #define BREATHING_NO_HALT 0
  897. #define BREATHING_HALT_OFF 1
  898. #define BREATHING_HALT_ON 2
  899. #define BREATHING_STEPS 128
  900. static uint8_t breathing_period = BREATHING_PERIOD;
  901. static uint8_t breathing_halt = BREATHING_NO_HALT;
  902. static uint16_t breathing_counter = 0;
  903. bool is_breathing(void) {
  904. return !!(TIMSK1 & _BV(TOIE1));
  905. }
  906. #define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
  907. #define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
  908. #define breathing_min() do {breathing_counter = 0;} while (0)
  909. #define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
  910. void breathing_enable(void)
  911. {
  912. breathing_counter = 0;
  913. breathing_halt = BREATHING_NO_HALT;
  914. breathing_interrupt_enable();
  915. }
  916. void breathing_pulse(void)
  917. {
  918. if (get_backlight_level() == 0)
  919. breathing_min();
  920. else
  921. breathing_max();
  922. breathing_halt = BREATHING_HALT_ON;
  923. breathing_interrupt_enable();
  924. }
  925. void breathing_disable(void)
  926. {
  927. breathing_interrupt_disable();
  928. // Restore backlight level
  929. backlight_set(get_backlight_level());
  930. }
  931. void breathing_self_disable(void)
  932. {
  933. if (get_backlight_level() == 0)
  934. breathing_halt = BREATHING_HALT_OFF;
  935. else
  936. breathing_halt = BREATHING_HALT_ON;
  937. }
  938. void breathing_toggle(void) {
  939. if (is_breathing())
  940. breathing_disable();
  941. else
  942. breathing_enable();
  943. }
  944. void breathing_period_set(uint8_t value)
  945. {
  946. if (!value)
  947. value = 1;
  948. breathing_period = value;
  949. }
  950. void breathing_period_default(void) {
  951. breathing_period_set(BREATHING_PERIOD);
  952. }
  953. void breathing_period_inc(void)
  954. {
  955. breathing_period_set(breathing_period+1);
  956. }
  957. void breathing_period_dec(void)
  958. {
  959. breathing_period_set(breathing_period-1);
  960. }
  961. /* To generate breathing curve in python:
  962. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  963. */
  964. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  965. // Use this before the cie_lightness function.
  966. static inline uint16_t scale_backlight(uint16_t v) {
  967. return v / BACKLIGHT_LEVELS * get_backlight_level();
  968. }
  969. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  970. * about 244 times per second.
  971. */
  972. ISR(TIMER1_OVF_vect)
  973. {
  974. uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  975. // resetting after one period to prevent ugly reset at overflow.
  976. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  977. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  978. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
  979. ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  980. {
  981. breathing_interrupt_disable();
  982. }
  983. set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  984. }
  985. #endif // BACKLIGHT_BREATHING
  986. __attribute__ ((weak))
  987. void backlight_init_ports(void)
  988. {
  989. // Setup backlight pin as output and output to on state.
  990. // DDRx |= n
  991. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  992. #if BACKLIGHT_ON_STATE == 0
  993. // PORTx &= ~n
  994. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  995. #else
  996. // PORTx |= n
  997. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  998. #endif
  999. // I could write a wall of text here to explain... but TL;DW
  1000. // Go read the ATmega32u4 datasheet.
  1001. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1002. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1003. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1004. // (i.e. start high, go low when counter matches.)
  1005. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1006. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1007. /*
  1008. 14.8.3:
  1009. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1010. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1011. */
  1012. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  1013. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1014. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1015. ICR1 = TIMER_TOP;
  1016. backlight_init();
  1017. #ifdef BACKLIGHT_BREATHING
  1018. breathing_enable();
  1019. #endif
  1020. }
  1021. #endif // NO_HARDWARE_PWM
  1022. #else // backlight
  1023. __attribute__ ((weak))
  1024. void backlight_init_ports(void) {}
  1025. __attribute__ ((weak))
  1026. void backlight_set(uint8_t level) {}
  1027. #endif // backlight
  1028. // Functions for spitting out values
  1029. //
  1030. void send_dword(uint32_t number) { // this might not actually work
  1031. uint16_t word = (number >> 16);
  1032. send_word(word);
  1033. send_word(number & 0xFFFFUL);
  1034. }
  1035. void send_word(uint16_t number) {
  1036. uint8_t byte = number >> 8;
  1037. send_byte(byte);
  1038. send_byte(number & 0xFF);
  1039. }
  1040. void send_byte(uint8_t number) {
  1041. uint8_t nibble = number >> 4;
  1042. send_nibble(nibble);
  1043. send_nibble(number & 0xF);
  1044. }
  1045. void send_nibble(uint8_t number) {
  1046. switch (number) {
  1047. case 0:
  1048. register_code(KC_0);
  1049. unregister_code(KC_0);
  1050. break;
  1051. case 1 ... 9:
  1052. register_code(KC_1 + (number - 1));
  1053. unregister_code(KC_1 + (number - 1));
  1054. break;
  1055. case 0xA ... 0xF:
  1056. register_code(KC_A + (number - 0xA));
  1057. unregister_code(KC_A + (number - 0xA));
  1058. break;
  1059. }
  1060. }
  1061. __attribute__((weak))
  1062. uint16_t hex_to_keycode(uint8_t hex)
  1063. {
  1064. hex = hex & 0xF;
  1065. if (hex == 0x0) {
  1066. return KC_0;
  1067. } else if (hex < 0xA) {
  1068. return KC_1 + (hex - 0x1);
  1069. } else {
  1070. return KC_A + (hex - 0xA);
  1071. }
  1072. }
  1073. void api_send_unicode(uint32_t unicode) {
  1074. #ifdef API_ENABLE
  1075. uint8_t chunk[4];
  1076. dword_to_bytes(unicode, chunk);
  1077. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1078. #endif
  1079. }
  1080. __attribute__ ((weak))
  1081. void led_set_user(uint8_t usb_led) {
  1082. }
  1083. __attribute__ ((weak))
  1084. void led_set_kb(uint8_t usb_led) {
  1085. led_set_user(usb_led);
  1086. }
  1087. __attribute__ ((weak))
  1088. void led_init_ports(void)
  1089. {
  1090. }
  1091. __attribute__ ((weak))
  1092. void led_set(uint8_t usb_led)
  1093. {
  1094. // Example LED Code
  1095. //
  1096. // // Using PE6 Caps Lock LED
  1097. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1098. // {
  1099. // // Output high.
  1100. // DDRE |= (1<<6);
  1101. // PORTE |= (1<<6);
  1102. // }
  1103. // else
  1104. // {
  1105. // // Output low.
  1106. // DDRE &= ~(1<<6);
  1107. // PORTE &= ~(1<<6);
  1108. // }
  1109. led_set_kb(usb_led);
  1110. }
  1111. //------------------------------------------------------------------------------
  1112. // Override these functions in your keymap file to play different tunes on
  1113. // different events such as startup and bootloader jump
  1114. __attribute__ ((weak))
  1115. void startup_user() {}
  1116. __attribute__ ((weak))
  1117. void shutdown_user() {}
  1118. //------------------------------------------------------------------------------