matrix.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <avr/io.h>
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "split_util.h"
  26. #include "pro_micro.h"
  27. #include "config.h"
  28. #include "timer.h"
  29. #ifdef USE_I2C
  30. # include "i2c.h"
  31. #else // USE_SERIAL
  32. # include "serial.h"
  33. #endif
  34. #ifndef DEBOUNCING_DELAY
  35. # define DEBOUNCING_DELAY 5
  36. #endif
  37. #if (DEBOUNCING_DELAY > 0)
  38. static uint16_t debouncing_time;
  39. static bool debouncing = false;
  40. #endif
  41. #if (MATRIX_COLS <= 8)
  42. # define print_matrix_header() print("\nr/c 01234567\n")
  43. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  44. # define matrix_bitpop(i) bitpop(matrix[i])
  45. # define ROW_SHIFTER ((uint8_t)1)
  46. #else
  47. # error "Currently only supports 8 COLS"
  48. #endif
  49. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  50. #define ERROR_DISCONNECT_COUNT 5
  51. #define ROWS_PER_HAND (MATRIX_ROWS/2)
  52. static uint8_t error_count = 0;
  53. static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  54. static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  55. /* matrix state(1:on, 0:off) */
  56. static matrix_row_t matrix[MATRIX_ROWS];
  57. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  58. #if (DIODE_DIRECTION == COL2ROW)
  59. static void init_cols(void);
  60. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  61. static void unselect_rows(void);
  62. static void select_row(uint8_t row);
  63. static void unselect_row(uint8_t row);
  64. #elif (DIODE_DIRECTION == ROW2COL)
  65. static void init_rows(void);
  66. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  67. static void unselect_cols(void);
  68. static void unselect_col(uint8_t col);
  69. static void select_col(uint8_t col);
  70. #endif
  71. __attribute__ ((weak))
  72. void matrix_init_quantum(void) {
  73. matrix_init_kb();
  74. }
  75. __attribute__ ((weak))
  76. void matrix_scan_quantum(void) {
  77. matrix_scan_kb();
  78. }
  79. __attribute__ ((weak))
  80. void matrix_init_kb(void) {
  81. matrix_init_user();
  82. }
  83. __attribute__ ((weak))
  84. void matrix_scan_kb(void) {
  85. matrix_scan_user();
  86. }
  87. __attribute__ ((weak))
  88. void matrix_init_user(void) {
  89. }
  90. __attribute__ ((weak))
  91. void matrix_scan_user(void) {
  92. }
  93. inline
  94. uint8_t matrix_rows(void)
  95. {
  96. return MATRIX_ROWS;
  97. }
  98. inline
  99. uint8_t matrix_cols(void)
  100. {
  101. return MATRIX_COLS;
  102. }
  103. void matrix_init(void)
  104. {
  105. #ifdef DISABLE_JTAG
  106. // JTAG disable for PORT F. write JTD bit twice within four cycles.
  107. MCUCR |= (1<<JTD);
  108. MCUCR |= (1<<JTD);
  109. #endif
  110. debug_enable = true;
  111. debug_matrix = true;
  112. debug_mouse = true;
  113. // initialize row and col
  114. #if (DIODE_DIRECTION == COL2ROW)
  115. unselect_rows();
  116. init_cols();
  117. #elif (DIODE_DIRECTION == ROW2COL)
  118. unselect_cols();
  119. init_rows();
  120. #endif
  121. TX_RX_LED_INIT;
  122. // initialize matrix state: all keys off
  123. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  124. matrix[i] = 0;
  125. matrix_debouncing[i] = 0;
  126. }
  127. matrix_init_quantum();
  128. }
  129. uint8_t _matrix_scan(void)
  130. {
  131. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  132. #if (DIODE_DIRECTION == COL2ROW)
  133. // Set row, read cols
  134. for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
  135. # if (DEBOUNCING_DELAY > 0)
  136. bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
  137. if (matrix_changed) {
  138. debouncing = true;
  139. debouncing_time = timer_read();
  140. PORTD ^= (1 << 2);
  141. }
  142. # else
  143. read_cols_on_row(matrix+offset, current_row);
  144. # endif
  145. }
  146. #elif (DIODE_DIRECTION == ROW2COL)
  147. // Set col, read rows
  148. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  149. # if (DEBOUNCING_DELAY > 0)
  150. bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
  151. if (matrix_changed) {
  152. debouncing = true;
  153. debouncing_time = timer_read();
  154. }
  155. # else
  156. read_rows_on_col(matrix+offset, current_col);
  157. # endif
  158. }
  159. #endif
  160. # if (DEBOUNCING_DELAY > 0)
  161. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
  162. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  163. matrix[i+offset] = matrix_debouncing[i+offset];
  164. }
  165. debouncing = false;
  166. }
  167. # endif
  168. return 1;
  169. }
  170. #ifdef USE_I2C
  171. // Get rows from other half over i2c
  172. int i2c_transaction(void) {
  173. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  174. int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  175. if (err) goto i2c_error;
  176. // start of matrix stored at 0x00
  177. err = i2c_master_write(0x00);
  178. if (err) goto i2c_error;
  179. // Start read
  180. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  181. if (err) goto i2c_error;
  182. if (!err) {
  183. int i;
  184. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  185. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  186. }
  187. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  188. i2c_master_stop();
  189. } else {
  190. i2c_error: // the cable is disconnceted, or something else went wrong
  191. i2c_reset_state();
  192. return err;
  193. }
  194. return 0;
  195. }
  196. #else // USE_SERIAL
  197. int serial_transaction(void) {
  198. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  199. if (serial_update_buffers()) {
  200. return 1;
  201. }
  202. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  203. matrix[slaveOffset+i] = serial_slave_buffer[i];
  204. }
  205. return 0;
  206. }
  207. #endif
  208. uint8_t matrix_scan(void)
  209. {
  210. uint8_t ret = _matrix_scan();
  211. #ifdef USE_I2C
  212. if( i2c_transaction() ) {
  213. #else // USE_SERIAL
  214. if( serial_transaction() ) {
  215. #endif
  216. // turn on the indicator led when halves are disconnected
  217. TXLED1;
  218. error_count++;
  219. if (error_count > ERROR_DISCONNECT_COUNT) {
  220. // reset other half if disconnected
  221. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  222. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  223. matrix[slaveOffset+i] = 0;
  224. }
  225. }
  226. } else {
  227. // turn off the indicator led on no error
  228. TXLED0;
  229. error_count = 0;
  230. }
  231. matrix_scan_quantum();
  232. return ret;
  233. }
  234. void matrix_slave_scan(void) {
  235. _matrix_scan();
  236. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  237. #ifdef USE_I2C
  238. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  239. i2c_slave_buffer[i] = matrix[offset+i];
  240. }
  241. #else // USE_SERIAL
  242. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  243. serial_slave_buffer[i] = matrix[offset+i];
  244. }
  245. #endif
  246. }
  247. bool matrix_is_modified(void)
  248. {
  249. if (debouncing) return false;
  250. return true;
  251. }
  252. inline
  253. bool matrix_is_on(uint8_t row, uint8_t col)
  254. {
  255. return (matrix[row] & ((matrix_row_t)1<<col));
  256. }
  257. inline
  258. matrix_row_t matrix_get_row(uint8_t row)
  259. {
  260. return matrix[row];
  261. }
  262. void matrix_print(void)
  263. {
  264. print("\nr/c 0123456789ABCDEF\n");
  265. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  266. phex(row); print(": ");
  267. pbin_reverse16(matrix_get_row(row));
  268. print("\n");
  269. }
  270. }
  271. uint8_t matrix_key_count(void)
  272. {
  273. uint8_t count = 0;
  274. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  275. count += bitpop16(matrix[i]);
  276. }
  277. return count;
  278. }
  279. #if (DIODE_DIRECTION == COL2ROW)
  280. static void init_cols(void)
  281. {
  282. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  283. uint8_t pin = col_pins[x];
  284. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  285. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  286. }
  287. }
  288. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
  289. {
  290. // Store last value of row prior to reading
  291. matrix_row_t last_row_value = current_matrix[current_row];
  292. // Clear data in matrix row
  293. current_matrix[current_row] = 0;
  294. // Select row and wait for row selecton to stabilize
  295. select_row(current_row);
  296. wait_us(30);
  297. // For each col...
  298. for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  299. // Select the col pin to read (active low)
  300. uint8_t pin = col_pins[col_index];
  301. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  302. // Populate the matrix row with the state of the col pin
  303. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  304. }
  305. // Unselect row
  306. unselect_row(current_row);
  307. return (last_row_value != current_matrix[current_row]);
  308. }
  309. static void select_row(uint8_t row)
  310. {
  311. uint8_t pin = row_pins[row];
  312. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  313. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  314. }
  315. static void unselect_row(uint8_t row)
  316. {
  317. uint8_t pin = row_pins[row];
  318. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  319. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  320. }
  321. static void unselect_rows(void)
  322. {
  323. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  324. uint8_t pin = row_pins[x];
  325. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  326. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  327. }
  328. }
  329. #elif (DIODE_DIRECTION == ROW2COL)
  330. static void init_rows(void)
  331. {
  332. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  333. uint8_t pin = row_pins[x];
  334. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  335. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  336. }
  337. }
  338. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  339. {
  340. bool matrix_changed = false;
  341. // Select col and wait for col selecton to stabilize
  342. select_col(current_col);
  343. wait_us(30);
  344. // For each row...
  345. for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
  346. {
  347. // Store last value of row prior to reading
  348. matrix_row_t last_row_value = current_matrix[row_index];
  349. // Check row pin state
  350. if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
  351. {
  352. // Pin LO, set col bit
  353. current_matrix[row_index] |= (ROW_SHIFTER << current_col);
  354. }
  355. else
  356. {
  357. // Pin HI, clear col bit
  358. current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
  359. }
  360. // Determine if the matrix changed state
  361. if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
  362. {
  363. matrix_changed = true;
  364. }
  365. }
  366. // Unselect col
  367. unselect_col(current_col);
  368. return matrix_changed;
  369. }
  370. static void select_col(uint8_t col)
  371. {
  372. uint8_t pin = col_pins[col];
  373. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  374. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  375. }
  376. static void unselect_col(uint8_t col)
  377. {
  378. uint8_t pin = col_pins[col];
  379. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  380. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  381. }
  382. static void unselect_cols(void)
  383. {
  384. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  385. uint8_t pin = col_pins[x];
  386. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  387. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  388. }
  389. }
  390. #endif