audio_arm.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /* Copyright 2016 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "audio.h"
  17. #include "ch.h"
  18. #include "hal.h"
  19. #include <string.h>
  20. #include "print.h"
  21. #include "keymap.h"
  22. #include "eeconfig.h"
  23. // -----------------------------------------------------------------------------
  24. int voices = 0;
  25. int voice_place = 0;
  26. float frequency = 0;
  27. float frequency_alt = 0;
  28. int volume = 0;
  29. long position = 0;
  30. float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  31. int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  32. bool sliding = false;
  33. float place = 0;
  34. uint8_t * sample;
  35. uint16_t sample_length = 0;
  36. bool playing_notes = false;
  37. bool playing_note = false;
  38. float note_frequency = 0;
  39. float note_length = 0;
  40. uint8_t note_tempo = TEMPO_DEFAULT;
  41. float note_timbre = TIMBRE_DEFAULT;
  42. uint16_t note_position = 0;
  43. float (* notes_pointer)[][2];
  44. uint16_t notes_count;
  45. bool notes_repeat;
  46. bool note_resting = false;
  47. uint8_t current_note = 0;
  48. uint8_t rest_counter = 0;
  49. #ifdef VIBRATO_ENABLE
  50. float vibrato_counter = 0;
  51. float vibrato_strength = .5;
  52. float vibrato_rate = 0.125;
  53. #endif
  54. float polyphony_rate = 0;
  55. static bool audio_initialized = false;
  56. audio_config_t audio_config;
  57. uint16_t envelope_index = 0;
  58. bool glissando = true;
  59. #ifndef STARTUP_SONG
  60. #define STARTUP_SONG SONG(STARTUP_SOUND)
  61. #endif
  62. float startup_song[][2] = STARTUP_SONG;
  63. static void gpt_cb8(GPTDriver *gptp);
  64. #define DAC_BUFFER_SIZE 720
  65. #define DAC_SAMPLE_MAX 65535U
  66. #define START_CHANNEL_1() gptStart(&GPTD6, &gpt6cfg1); \
  67. gptStartContinuous(&GPTD6, 2U)
  68. #define START_CHANNEL_2() gptStart(&GPTD7, &gpt7cfg1); \
  69. gptStartContinuous(&GPTD7, 2U)
  70. #define STOP_CHANNEL_1() gptStopTimer(&GPTD6)
  71. #define STOP_CHANNEL_2() gptStopTimer(&GPTD7)
  72. #define RESTART_CHANNEL_1() STOP_CHANNEL_1(); \
  73. START_CHANNEL_1()
  74. #define RESTART_CHANNEL_2() STOP_CHANNEL_2(); \
  75. START_CHANNEL_2()
  76. #define UPDATE_CHANNEL_1_FREQ(freq) gpt6cfg1.frequency = freq * DAC_BUFFER_SIZE; \
  77. RESTART_CHANNEL_1()
  78. #define UPDATE_CHANNEL_2_FREQ(freq) gpt7cfg1.frequency = freq * DAC_BUFFER_SIZE; \
  79. RESTART_CHANNEL_2()
  80. #define GET_CHANNEL_1_FREQ gpt6cfg1.frequency
  81. #define GET_CHANNEL_2_FREQ gpt7cfg1.frequency
  82. /*
  83. * GPT6 configuration.
  84. */
  85. // static const GPTConfig gpt6cfg1 = {
  86. // .frequency = 1000000U,
  87. // .callback = NULL,
  88. // .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  89. // .dier = 0U
  90. // };
  91. GPTConfig gpt6cfg1 = {
  92. .frequency = 440U*DAC_BUFFER_SIZE,
  93. .callback = NULL,
  94. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  95. .dier = 0U
  96. };
  97. GPTConfig gpt7cfg1 = {
  98. .frequency = 440U*DAC_BUFFER_SIZE,
  99. .callback = NULL,
  100. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  101. .dier = 0U
  102. };
  103. GPTConfig gpt8cfg1 = {
  104. .frequency = 10,
  105. .callback = gpt_cb8,
  106. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  107. .dier = 0U
  108. };
  109. /*
  110. * DAC test buffer (sine wave).
  111. */
  112. // static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
  113. // 2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
  114. // 2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
  115. // 2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
  116. // 3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
  117. // 3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
  118. // 3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
  119. // 3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
  120. // 4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
  121. // 4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
  122. // 3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
  123. // 3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
  124. // 3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
  125. // 3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
  126. // 2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
  127. // 2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
  128. // 2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
  129. // 1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
  130. // 1215, 1182, 1150, 1118, 1086, 1055, 1024, 993, 963, 933, 903, 873,
  131. // 844, 816, 787, 759, 732, 705, 678, 651, 626, 600, 575, 550,
  132. // 526, 503, 479, 457, 434, 413, 391, 371, 350, 331, 312, 293,
  133. // 275, 257, 240, 224, 208, 192, 177, 163, 150, 136, 124, 112,
  134. // 101, 90, 80, 70, 61, 53, 45, 38, 32, 26, 20, 16,
  135. // 12, 8, 5, 3, 2, 1, 0, 1, 2, 3, 5, 8,
  136. // 12, 16, 20, 26, 32, 38, 45, 53, 61, 70, 80, 90,
  137. // 101, 112, 124, 136, 150, 163, 177, 192, 208, 224, 240, 257,
  138. // 275, 293, 312, 331, 350, 371, 391, 413, 434, 457, 479, 503,
  139. // 526, 550, 575, 600, 626, 651, 678, 705, 732, 759, 787, 816,
  140. // 844, 873, 903, 933, 963, 993, 1024, 1055, 1086, 1118, 1150, 1182,
  141. // 1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
  142. // 1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012
  143. // };
  144. // static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
  145. // 12, 8, 5, 3, 2, 1, 0, 1, 2, 3, 5, 8,
  146. // 12, 16, 20, 26, 32, 38, 45, 53, 61, 70, 80, 90,
  147. // 101, 112, 124, 136, 150, 163, 177, 192, 208, 224, 240, 257,
  148. // 275, 293, 312, 331, 350, 371, 391, 413, 434, 457, 479, 503,
  149. // 526, 550, 575, 600, 626, 651, 678, 705, 732, 759, 787, 816,
  150. // 844, 873, 903, 933, 963, 993, 1024, 1055, 1086, 1118, 1150, 1182,
  151. // 1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
  152. // 1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012,
  153. // 2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
  154. // 2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
  155. // 2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
  156. // 3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
  157. // 3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
  158. // 3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
  159. // 3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
  160. // 4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
  161. // 4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
  162. // 3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
  163. // 3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
  164. // 3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
  165. // 3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
  166. // 2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
  167. // 2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
  168. // 2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
  169. // 1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
  170. // 1215, 1182, 1150, 1118, 1086, 1055, 1024, 993, 963, 933, 903, 873,
  171. // 844, 816, 787, 759, 732, 705, 678, 651, 626, 600, 575, 550,
  172. // 526, 503, 479, 457, 434, 413, 391, 371, 350, 331, 312, 293,
  173. // 275, 257, 240, 224, 208, 192, 177, 163, 150, 136, 124, 112,
  174. // 101, 90, 80, 70, 61, 53, 45, 38, 32, 26, 20, 16
  175. // };
  176. // squarewave
  177. static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
  178. // First half is max, second half is 0
  179. [0 ... DAC_BUFFER_SIZE/2-1] = DAC_SAMPLE_MAX,
  180. [DAC_BUFFER_SIZE/2 ... DAC_BUFFER_SIZE -1] = 0,
  181. };
  182. // squarewave
  183. static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
  184. // opposite of dac_buffer above
  185. [0 ... DAC_BUFFER_SIZE/2-1] = 0,
  186. [DAC_BUFFER_SIZE/2 ... DAC_BUFFER_SIZE -1] = DAC_SAMPLE_MAX,
  187. };
  188. /*
  189. * DAC streaming callback.
  190. */
  191. size_t nx = 0, ny = 0, nz = 0;
  192. static void end_cb1(DACDriver *dacp, dacsample_t *buffer, size_t n) {
  193. (void)dacp;
  194. nz++;
  195. if (dac_buffer == buffer) {
  196. nx += n;
  197. }
  198. else {
  199. ny += n;
  200. }
  201. if ((nz % 1000) == 0) {
  202. // palTogglePad(GPIOD, GPIOD_LED3);
  203. }
  204. }
  205. /*
  206. * DAC error callback.
  207. */
  208. static void error_cb1(DACDriver *dacp, dacerror_t err) {
  209. (void)dacp;
  210. (void)err;
  211. chSysHalt("DAC failure");
  212. }
  213. static const DACConfig dac1cfg1 = {
  214. .init = DAC_SAMPLE_MAX,
  215. .datamode = DAC_DHRM_12BIT_RIGHT
  216. };
  217. static const DACConversionGroup dacgrpcfg1 = {
  218. .num_channels = 1U,
  219. .end_cb = end_cb1,
  220. .error_cb = error_cb1,
  221. .trigger = DAC_TRG(0)
  222. };
  223. static const DACConfig dac1cfg2 = {
  224. .init = DAC_SAMPLE_MAX,
  225. .datamode = DAC_DHRM_12BIT_RIGHT
  226. };
  227. static const DACConversionGroup dacgrpcfg2 = {
  228. .num_channels = 1U,
  229. .end_cb = end_cb1,
  230. .error_cb = error_cb1,
  231. .trigger = DAC_TRG(0)
  232. };
  233. void audio_init()
  234. {
  235. if (audio_initialized)
  236. return;
  237. // Check EEPROM
  238. // if (!eeconfig_is_enabled())
  239. // {
  240. // eeconfig_init();
  241. // }
  242. // audio_config.raw = eeconfig_read_audio();
  243. audio_config.enable = true;
  244. /*
  245. * Starting DAC1 driver, setting up the output pin as analog as suggested
  246. * by the Reference Manual.
  247. */
  248. palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
  249. palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
  250. dacStart(&DACD1, &dac1cfg1);
  251. dacStart(&DACD2, &dac1cfg2);
  252. /*
  253. * Starting GPT6/7 driver, it is used for triggering the DAC.
  254. */
  255. START_CHANNEL_1();
  256. START_CHANNEL_2();
  257. /*
  258. * Starting a continuous conversion.
  259. */
  260. dacStartConversion(&DACD1, &dacgrpcfg1, (dacsample_t *)dac_buffer, DAC_BUFFER_SIZE);
  261. dacStartConversion(&DACD2, &dacgrpcfg2, (dacsample_t *)dac_buffer_2, DAC_BUFFER_SIZE);
  262. audio_initialized = true;
  263. if (audio_config.enable) {
  264. PLAY_SONG(startup_song);
  265. }
  266. }
  267. void stop_all_notes()
  268. {
  269. dprintf("audio stop all notes");
  270. if (!audio_initialized) {
  271. audio_init();
  272. }
  273. voices = 0;
  274. gptStopTimer(&GPTD6);
  275. gptStopTimer(&GPTD7);
  276. gptStopTimer(&GPTD8);
  277. playing_notes = false;
  278. playing_note = false;
  279. frequency = 0;
  280. frequency_alt = 0;
  281. volume = 0;
  282. for (uint8_t i = 0; i < 8; i++)
  283. {
  284. frequencies[i] = 0;
  285. volumes[i] = 0;
  286. }
  287. }
  288. void stop_note(float freq)
  289. {
  290. dprintf("audio stop note freq=%d", (int)freq);
  291. if (playing_note) {
  292. if (!audio_initialized) {
  293. audio_init();
  294. }
  295. for (int i = 7; i >= 0; i--) {
  296. if (frequencies[i] == freq) {
  297. frequencies[i] = 0;
  298. volumes[i] = 0;
  299. for (int j = i; (j < 7); j++) {
  300. frequencies[j] = frequencies[j+1];
  301. frequencies[j+1] = 0;
  302. volumes[j] = volumes[j+1];
  303. volumes[j+1] = 0;
  304. }
  305. break;
  306. }
  307. }
  308. voices--;
  309. if (voices < 0)
  310. voices = 0;
  311. if (voice_place >= voices) {
  312. voice_place = 0;
  313. }
  314. if (voices == 0) {
  315. STOP_CHANNEL_1();
  316. STOP_CHANNEL_2();
  317. gptStopTimer(&GPTD8);
  318. frequency = 0;
  319. frequency_alt = 0;
  320. volume = 0;
  321. playing_note = false;
  322. }
  323. }
  324. }
  325. #ifdef VIBRATO_ENABLE
  326. float mod(float a, int b)
  327. {
  328. float r = fmod(a, b);
  329. return r < 0 ? r + b : r;
  330. }
  331. float vibrato(float average_freq) {
  332. #ifdef VIBRATO_STRENGTH_ENABLE
  333. float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
  334. #else
  335. float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
  336. #endif
  337. vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0/average_freq)), VIBRATO_LUT_LENGTH);
  338. return vibrated_freq;
  339. }
  340. #endif
  341. static void gpt_cb8(GPTDriver *gptp) {
  342. float freq;
  343. if (playing_note) {
  344. if (voices > 0) {
  345. float freq_alt = 0;
  346. if (voices > 1) {
  347. if (polyphony_rate == 0) {
  348. if (glissando) {
  349. if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440/frequencies[voices - 2]/12/2)) {
  350. frequency_alt = frequency_alt * pow(2, 440/frequency_alt/12/2);
  351. } else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440/frequencies[voices - 2]/12/2)) {
  352. frequency_alt = frequency_alt * pow(2, -440/frequency_alt/12/2);
  353. } else {
  354. frequency_alt = frequencies[voices - 2];
  355. }
  356. } else {
  357. frequency_alt = frequencies[voices - 2];
  358. }
  359. #ifdef VIBRATO_ENABLE
  360. if (vibrato_strength > 0) {
  361. freq_alt = vibrato(frequency_alt);
  362. } else {
  363. freq_alt = frequency_alt;
  364. }
  365. #else
  366. freq_alt = frequency_alt;
  367. #endif
  368. }
  369. if (envelope_index < 65535) {
  370. envelope_index++;
  371. }
  372. freq_alt = voice_envelope(freq_alt);
  373. if (freq_alt < 30.517578125) {
  374. freq_alt = 30.52;
  375. }
  376. if (GET_CHANNEL_2_FREQ != (uint16_t)freq_alt) {
  377. UPDATE_CHANNEL_2_FREQ(freq_alt);
  378. } else {
  379. RESTART_CHANNEL_2();
  380. }
  381. //note_timbre;
  382. }
  383. if (polyphony_rate > 0) {
  384. if (voices > 1) {
  385. voice_place %= voices;
  386. if (place++ > (frequencies[voice_place] / polyphony_rate)) {
  387. voice_place = (voice_place + 1) % voices;
  388. place = 0.0;
  389. }
  390. }
  391. #ifdef VIBRATO_ENABLE
  392. if (vibrato_strength > 0) {
  393. freq = vibrato(frequencies[voice_place]);
  394. } else {
  395. freq = frequencies[voice_place];
  396. }
  397. #else
  398. freq = frequencies[voice_place];
  399. #endif
  400. } else {
  401. if (glissando) {
  402. if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440/frequencies[voices - 1]/12/2)) {
  403. frequency = frequency * pow(2, 440/frequency/12/2);
  404. } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440/frequencies[voices - 1]/12/2)) {
  405. frequency = frequency * pow(2, -440/frequency/12/2);
  406. } else {
  407. frequency = frequencies[voices - 1];
  408. }
  409. } else {
  410. frequency = frequencies[voices - 1];
  411. }
  412. #ifdef VIBRATO_ENABLE
  413. if (vibrato_strength > 0) {
  414. freq = vibrato(frequency);
  415. } else {
  416. freq = frequency;
  417. }
  418. #else
  419. freq = frequency;
  420. #endif
  421. }
  422. if (envelope_index < 65535) {
  423. envelope_index++;
  424. }
  425. freq = voice_envelope(freq);
  426. if (freq < 30.517578125) {
  427. freq = 30.52;
  428. }
  429. if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
  430. UPDATE_CHANNEL_1_FREQ(freq);
  431. } else {
  432. RESTART_CHANNEL_1();
  433. }
  434. //note_timbre;
  435. }
  436. }
  437. if (playing_notes) {
  438. if (note_frequency > 0) {
  439. #ifdef VIBRATO_ENABLE
  440. if (vibrato_strength > 0) {
  441. freq = vibrato(note_frequency);
  442. } else {
  443. freq = note_frequency;
  444. }
  445. #else
  446. freq = note_frequency;
  447. #endif
  448. if (envelope_index < 65535) {
  449. envelope_index++;
  450. }
  451. freq = voice_envelope(freq);
  452. if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
  453. UPDATE_CHANNEL_1_FREQ(freq);
  454. UPDATE_CHANNEL_2_FREQ(freq);
  455. }
  456. //note_timbre;
  457. } else {
  458. // gptStopTimer(&GPTD6);
  459. // gptStopTimer(&GPTD7);
  460. }
  461. note_position++;
  462. bool end_of_note = false;
  463. if (GET_CHANNEL_1_FREQ > 0) {
  464. if (!note_resting)
  465. end_of_note = (note_position >= (note_length*8 - 1));
  466. else
  467. end_of_note = (note_position >= (note_length*8));
  468. } else {
  469. end_of_note = (note_position >= (note_length*8));
  470. }
  471. if (end_of_note) {
  472. current_note++;
  473. if (current_note >= notes_count) {
  474. if (notes_repeat) {
  475. current_note = 0;
  476. } else {
  477. STOP_CHANNEL_1();
  478. STOP_CHANNEL_2();
  479. // gptStopTimer(&GPTD8);
  480. playing_notes = false;
  481. return;
  482. }
  483. }
  484. if (!note_resting) {
  485. note_resting = true;
  486. current_note--;
  487. if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
  488. note_frequency = 0;
  489. note_length = 1;
  490. } else {
  491. note_frequency = (*notes_pointer)[current_note][0];
  492. note_length = 1;
  493. }
  494. } else {
  495. note_resting = false;
  496. envelope_index = 0;
  497. note_frequency = (*notes_pointer)[current_note][0];
  498. note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
  499. }
  500. note_position = 0;
  501. }
  502. }
  503. if (!audio_config.enable) {
  504. playing_notes = false;
  505. playing_note = false;
  506. }
  507. }
  508. void play_note(float freq, int vol) {
  509. dprintf("audio play note freq=%d vol=%d", (int)freq, vol);
  510. if (!audio_initialized) {
  511. audio_init();
  512. }
  513. if (audio_config.enable && voices < 8) {
  514. // Cancel notes if notes are playing
  515. if (playing_notes)
  516. stop_all_notes();
  517. playing_note = true;
  518. envelope_index = 0;
  519. if (freq > 0) {
  520. frequencies[voices] = freq;
  521. volumes[voices] = vol;
  522. voices++;
  523. }
  524. gptStart(&GPTD8, &gpt8cfg1);
  525. gptStartContinuous(&GPTD8, 2U);
  526. RESTART_CHANNEL_1();
  527. RESTART_CHANNEL_2();
  528. }
  529. }
  530. void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat)
  531. {
  532. if (!audio_initialized) {
  533. audio_init();
  534. }
  535. if (audio_config.enable) {
  536. // Cancel note if a note is playing
  537. if (playing_note)
  538. stop_all_notes();
  539. playing_notes = true;
  540. notes_pointer = np;
  541. notes_count = n_count;
  542. notes_repeat = n_repeat;
  543. place = 0;
  544. current_note = 0;
  545. note_frequency = (*notes_pointer)[current_note][0];
  546. note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
  547. note_position = 0;
  548. gptStart(&GPTD8, &gpt8cfg1);
  549. gptStartContinuous(&GPTD8, 2U);
  550. RESTART_CHANNEL_1();
  551. RESTART_CHANNEL_2();
  552. }
  553. }
  554. bool is_playing_notes(void) {
  555. return playing_notes;
  556. }
  557. bool is_audio_on(void) {
  558. return (audio_config.enable != 0);
  559. }
  560. void audio_toggle(void) {
  561. audio_config.enable ^= 1;
  562. eeconfig_update_audio(audio_config.raw);
  563. if (audio_config.enable)
  564. audio_on_user();
  565. }
  566. void audio_on(void) {
  567. audio_config.enable = 1;
  568. eeconfig_update_audio(audio_config.raw);
  569. audio_on_user();
  570. }
  571. void audio_off(void) {
  572. audio_config.enable = 0;
  573. eeconfig_update_audio(audio_config.raw);
  574. }
  575. #ifdef VIBRATO_ENABLE
  576. // Vibrato rate functions
  577. void set_vibrato_rate(float rate) {
  578. vibrato_rate = rate;
  579. }
  580. void increase_vibrato_rate(float change) {
  581. vibrato_rate *= change;
  582. }
  583. void decrease_vibrato_rate(float change) {
  584. vibrato_rate /= change;
  585. }
  586. #ifdef VIBRATO_STRENGTH_ENABLE
  587. void set_vibrato_strength(float strength) {
  588. vibrato_strength = strength;
  589. }
  590. void increase_vibrato_strength(float change) {
  591. vibrato_strength *= change;
  592. }
  593. void decrease_vibrato_strength(float change) {
  594. vibrato_strength /= change;
  595. }
  596. #endif /* VIBRATO_STRENGTH_ENABLE */
  597. #endif /* VIBRATO_ENABLE */
  598. // Polyphony functions
  599. void set_polyphony_rate(float rate) {
  600. polyphony_rate = rate;
  601. }
  602. void enable_polyphony() {
  603. polyphony_rate = 5;
  604. }
  605. void disable_polyphony() {
  606. polyphony_rate = 0;
  607. }
  608. void increase_polyphony_rate(float change) {
  609. polyphony_rate *= change;
  610. }
  611. void decrease_polyphony_rate(float change) {
  612. polyphony_rate /= change;
  613. }
  614. // Timbre function
  615. void set_timbre(float timbre) {
  616. note_timbre = timbre;
  617. }
  618. // Tempo functions
  619. void set_tempo(uint8_t tempo) {
  620. note_tempo = tempo;
  621. }
  622. void decrease_tempo(uint8_t tempo_change) {
  623. note_tempo += tempo_change;
  624. }
  625. void increase_tempo(uint8_t tempo_change) {
  626. if (note_tempo - tempo_change < 10) {
  627. note_tempo = 10;
  628. } else {
  629. note_tempo -= tempo_change;
  630. }
  631. }